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PREFACE

A characteristic feature of modern industrial and production processes
is that their qualitative and quantitative parameters are a function of many
interdependent and interconnected variables. Some of the process variables
must be maintained constant or made to vary in a manner prescribed
by the characteristic features of the given process. These are the so-called
controlled variables of the process. Their number is not fixed,
and some fairly complex systems may have but a single controlled variable.
Such single-variable systems are treated very extensively in the current
literature on automatic control theory.

The present book, on the other hand, is devoted to automatic control
systems with many controlled variables (at least more than one),

Examples abound of systems with numerous controlled variables,
and the modern tendency is toward ever greater utilization of systems and
plants of this kind. We call them multivariable control systems (MCS). *

The simplest examples of multivariable plants are provided by complex
industrial equipment. Boilers, synchronous electrical machines, etc.,
are typical examples. In these machines some variables, e. g., steam
pressure, steam temperature, voltage, a.c. frequency, are maintained
at a certain setting, although the total number of variables (the number
of generalized degrees of freedom) is much higher.

The development of multivariable control systems led to a new problem:
how to control each of the variables if they are interdependent, so that a
change in one of the variables alters all the others? The solution was
provided by I.N. Voznesenskii, who can be regarded as the originator of
the theory of autonomous, noninteracting control systems: the basic idea
was to design a control system with independent variables, where variation
of one variable did not change the other variables. This approach proved
to be quite useful for a number of controlled objects and it is currently the
only practicable solution of the problem in some cases,

However, this solution is inapplicable to most multivariable objects,
and in certain cases it is even meaningless. There is a by-now classical
illustration of this point. In continucus cold or hot rolling of sheet metal,
the controlled variables include the drive speeds, roll gaps, etc., but the
quality and mainly the geometry of the finished product do not depend on
each controlled variable separately, but on their combination, so that
control of each individual variable ignoring all the others at any given
time is a meaningless procedure.

Therefore, in addition to controlled objects which technologically can
be treated as noninteracting, there are cases of inherently interacting
variables, which cannot be adjusted individually. In the latter class we

* A more rigorous definition of a multivariable control system is given in the following.
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put all the plants or processes where the generalized quality index of the
finished product depends on all the controlled variables simultaneously.
1t is shown in this book that the design of noninteracting systems is not
always the best policy, not even for controlled objects where this is
technically feasible. We must emphasize, however, that there are very
numerous cases when noninteraction is simply unfeasible.

These two classes, however, are not separated by a Chinese Wall,
as everything depends on the problem being considered and the particular
conditions. For example, a synchronous electric machine as such falls
in the first category, whereas the same machine as part of a power
transmission system is an excellent example of a component in a system
with inherently interacting variables.

The basic problem of the present book is to elucidate the fundamental
properties of multivariable control systems. Whenever possible, I tried
to assess and evaluate the current methods and techniques for the synthesis
and analysis of control systems and to describe some of my original results.

The book comprises an introduction and eight chapters. The introduction
outlines the scope of the treatment and defines the fundamental concepts.

Chapter One is devoted to mathematical description of some typical
mutlivariable objects and control systems. The choice of the examples
is largely determined by my own field of interest. However, it seems to
me that the examples of Chapter One are of general significance as being
representative of the principal branches of industry — metallurgy, power
engineering, oil engineering and oil refining. The derivation of the
equation of the rectifying column and the analysis of its behavior as a
control system were carried out by Yu.N. Mikhailov under my supervision.

Chapter Two is devoted to the derivation of the equations of multivariable
control systems consisting of single-variable subsystems that are made up
of basic (necessary but not sufficient) elements. It will become clear from
what follows that this is not a fundamental restriction, since the technique
used in the derivation of the equations and the methods employed in their
investigation are applicable to the more general cases too. The principal
structural properties of this class of systems are elucidated for both the
steady-state and transient conditions. In particular, the matrix of error
coefficients is determined for the case of plant and control coupling of the
individual variables.

Chapters Three and Four investigate the general structural properties
of multivariable control systems. The main emphasis is on the class of
structures with infinite-gain stability in each subsystem; in these structures
every single-variable subsystem is clearly a multiloop configuration.

Multivariable combined-control systems are treated separately in
Chapter Five. Considerable space is devoted, in particular, to systems
where simultaneous deviation and load control is applied to structures of
infinite-gain stability.

Chapter Six deals with the problems of noninteraction and invariance.
The presentation begins with a discussion of the results of Voznesenskii
(USSR) and of Boksenbom and Hood (USA). We then proceed with the
invariance problem and describe the fundamental results of Kulebakin
and Petrov. Next, noninteraction and invariance are treated as structural
properties of a certain class of systems. Realizability and coarseness
(in the sense of A.A. Andronov), various cases of noise rejection, etc.,
are considered in great detail.
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Chapter Seven is concerned with the design of fixed-structure systems
which are equivalent in their properties to self-adjusting or adaptive
control systems. The discussion is based on structures with infinite-
gain stability, which have been treated in considerable detail in the
preceding chapters. The structural aspect of the sensitivity problem is
dealt with, and examples of systems with variable coefficients are
examined. The theoretical results are applied to a practical control
problem accommodating a large variation of the plant gain.

Chapter Eight is concerned with the variational aspects of multivariable
control. Optimization considerations suggest that the multivariable control
systems should be divided into two classes: systems where the general
optimum is attained by optimizing each single-variable subsystem, ignoring
the interaction with other controlled variables (in this class optimization
is synonimous to noninteraction) and systems with a generalized quality
index which depends simultaneously on all the controlled variables. A
particular example is considered where the control specifications are
given as a function of time. Here of particular interest are plants without
memory, to which linear programming can be successfully applied. This
range of problems was studied jointly by me and E.S. Silimzhanov. The
results of Sarachik and Kranc, also discussed in Chapter Eight, are of
considerable interest for the determination of the control vector as a
function of time for multivariable objects. Classical variational techniques
and dynamic programming are applied to determine the controller equations
in a multivariable system. It is remarkable that the solution of the
variational problem in an open domain yields structures with an infinite
gain parameter. On the whole the treatment of this chapter can be regarded
as only the first step toward a comprehensive solution of the problem of
synthesis of multivariable control systems.

It is my pleasant duty to thank Prof. A.A. Fel'dbaum who reviewed
the book and offered a number of highly valuable comments which greatly
contributed to the finished product.

M. Meerov




INTRODUCTION

In multivariable objects or plants the number of controlled variables is
greater than one and in general these variables are interconnected in such
a way that a change in any of the controlled variables alters all the other
variables (this refers to steady-state conditions, as well as to transients).

If the controlled variables are regarded as the plant outputs, we may
say that a multivariable plant has more than one output, and a change in
any one of its outputs leads to a change in all the outputs,

If a closed control loop is hooked up for each of the controlled variables,
we end up with a multivariable control system,

Multivariable control systems (MCS) are thus defined
in general as control systems with several controlled
variables which are coupled in such a way that a change
in any one variable leads to a change in all the vari-
ables, assuming of course that no special decoupling device is provided.

Typical multivariable objects are a boiler, where the controlled
variables are temperature, steam pressure, and water level; a turbojet
engine, where both the revolutions and the gas temperature at the turbine
outlet are controlled; a synchronous generator, where the voltage and
the speed are controlled (if the synchronous generator is connected in
parallel with other machines, the active and reactive power output are
additional controlled variables),

In the above examples the interrelationship between the individual
variables is due to natural (internal) properties of the controlled object.
Another extensive group of multivariable control systems arises in
connection with automation of production processes. The interaction
between the individual controlled variables in these systems is generally
due to technical and production factors. An excellent example is the
feedback control system for the electric drives in hot and cold continuous
rolling mills,

Figure I-1 is a block diagram of a system controlling the sheet thickness
in continuous cold rolling. Thickness gages (TG) are provided after each

G, Gz Gs
o Dy Dy
A A
4 ¢ 76 * TG 76
—————

Hin

FIGURE I-1. Block diagram of strip gage control in a con-
tinuous rolling mill,



stand. The sheet thickness is regulated by adjusting the roll gap and
maintaining constant rolling stress. The gage output signal is delivered

to the servosystem controlling the pressing screws. The rolling stress,

on the other hand, is maintained constant by adjusting the speed ratio of

the main drives and the coiler speed. These two groups of control systems,
however, are interconnected through the rolled metal strip, and thus
constitute a complex multivariable system.

The situation is considerably more complicated in hot rolling. Here
the thickness gage can be installed only after the last stand; moreover,
it is desirable to control the strip thickness at minimum permissible
tension. In hot rolling the strip thickness is highly sensitive to tension.
Variation of strip temperature and the heating of rolls also have a con-
siderable influence; there is always a certain contribution from other
entirely random factors as well. The object of control is to maintain the
strip thickness 6 constant. The gage 8 depends on the position of the
pressing screws, the speed ratio of the main drives, temperature, and
other random factors:

3=[[Fu (), Fat,n—1(t), 8, 8(x)]. (1-1)

Here Fu (t)is the control function of the pressing screws in the stands,
Fni, ni1(f) is the control function of the main drives, @ is the temperature,
B(x;) is a disturbance dependent on random factors.

We see from (I-1) that the controlled variable depends on the determinate
functions Fu (), Fu, ni-1(f), and a random function (x;). The functions Fy (?)
and Fpi, ni-1{f) are interrelated, and they jointly determine the geometry and,
in particular, the thickness of the rolled strip. The control problem here
is to choose the functions Fy. (f) and Fni, ni-1 () and the function f for given ©
and known probability distribution of B(x;)so that the thickness 8 is between
predetermined limits.

In rolling mills the strip tension control system and the roll positioning
system are coupled through the metal strip. The system for primary
refining and sulfur stabilization of crude oil (dehydration and desalination)
comes under the same category; the controlled variables here are tempera-
ture, flow rate, and liquid level, as well as the quantity of the chemical
reagent which is fed separately into the system. The control function
should be so chosen that oil of desired quality is obtained at a minimum cost.

There are many other examples from modern industry and technology
where the desired quality of the finished product is ensured by simultane- "
ously controlling a number of variables. The controlled variables are
generally coupled, so that a change in some of the variables leads to a
change in all the variables. We can safely say that the multivariable
control theory provides a theoretical foundation to large-scale compre-
hensive automation of industrial and technological processes.

The third group of multivariable control systems comprises the so-
called multidimensional servosystems. These are derived from
ordinary servosystems by imposing coupling on the measuring elements.

In this case we speak of the coupling of the component servos through

the measuring devices or control coupling. Figure I-2 shows a two-
dimensional servosystem, and Figure I-3 a three-dimensional servo-
system. This combination of individual servos into a single multidimensional




system may be due to the particular requirements of the technological
process, e.g., a copying machine. In some cases it also helps to improve
the quality of automatic control.
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FIGURE 1-2, A two-dimensional FIGURE I-3. A three-dimensional
servosystem. servosystem.

A common property of all multivariable control systems is that they
have several controlled variables (more than one). A separate subsystem
is designed for each controlled variable. The number of controllers is
naturally at least equal to the number of controlled variables. In multi-
variable plants the number of inputs is not less than the number of outputs.
It will be clear from the following examples that the number of controllers
(active inputs) is often greater than the number of controlled variables.
Moreover, the controlled object is subjected to external disturbances
which may vary arbitrarily (and are often described by random functions).
External disturbances, or loads, can be applied to some of the controlled
variables or to all of them. A multivariable control system thus contains
all the component elements which are normally encountered in systems
with one controlled variable.

However, the presence of several controlled variables constitutes more
than a simple quantitative difference between multivariable and single-
variable systems. There are some special problems which are character-
istic of multivariable control systems, and it would be incorrect to assume
that the multivariable control theory is a simple generalization of the
control theory for systems with a single variable.

For example, let us consider the problem of constraints imposed on
the system. In single-variable systems thiese constraints are mainly
determined by the nonlinearity of the characteristics, saturation phenomena,
etc., whereas in multivariable systems the constraints may be connected
with the peculiar character of the controlled variables. The presence of
several coupled controlled variables is a novel aspect in stability analysis
and quality considerations, not encountered in single-variable systems.
The study of multivariable systems also gives rise to certain topics
without counterpart in conventional control theory, such as (a) the problem
of noninteraction, (b) the problem of maintaining a given relationship




between the controlled variables, and (c) the problem of interacting control,
which minimizes (or maximizes) a certain quantity (e. g., the quality of the
finished product in a technological process).
Structure synthesis, which has emerged as one of the basic problems
in single-variable control systems, acquires special significarice in
multivariable control. It will be seen from the various sections of this
book that the coupling between the individual controlled variables essentially
depends on the structure of the multivariable system, and noninteraction
may be derived as a structural property of a certain class of structures.
The contribution from inherently nonlinear characteristics of the various
elements and their influence on the coupling between the variables and,
in particular, on the noninteraction aspects deserve special consideration.
Finally, the optimum and extremum problems are of special interest for
multivariable control systems. It will be shown that for a certain class
of structures noninteraction is equivalent to optimizing the system with
respect to some quality criterion.
The realizability of the invariance conditions also has some unique
aspects for multivariable control systems. The invariance conditions
of multivariable control are realizable only in combined-control systems,
where control by deviation (the Watt —Polzunov principle) is implemented
in conjunction with load control. Fairly extensive space is allotted in this
book to the treatment of combined-action control systems.
We have already noted that the quality of a multivariable control system
is often determined by a generalized criterion. The control functions for
each variable should be so chosen as
to extremize the generalized quality
index. In some cases, linear pro-

! i gramming provides an effective tool
Yiers ' ” “;l ¥, for the development of multivariable
_______ | e control systems of this kind, In
 Control Flant Chapter Eight linear programming is
applied to find the optimum operating
conditions of oil wells, We seek to
maximize the oil production under
Feedback given constraints on equipment and
operating conditions. Some economic
FIGURE I-4. A generalized block diagram index (e. g., production costs) can be
of 2 multivariable system. adopted as the generalized criterion

in this case.

The multivariable control theory
is very intimately linked with the problem of efficient design of large
systems., However complex the system, it always has a certain finite
number of main outputs, although there may be any number of factors
actively influencing these outputs. Moreover, the statistical indices of
the process may be adopted as the generalized outputs. The significant
point is that even in these complex systems we can always detect the main
outputs, which are interconnected in a certain way and acted upon by
additional random disturbances. On the whole, a complex multivariable
control system can be represented by some generalized block diagram,
like the one shown in Figure I-4,




And now some history. The first serious contributions in multivariable
control theory were published in the Soviet Union in 1938 /10, 11/, These
initial efforts were entirely concerned with the problem of noninteraction.
Voznesenskii /11/ considered the feasibility of providing separate con-
trollers for the individual variables and setting up such coupling that a
change in one of the variables would not affect the other variables. This
noninteraction problem, which Voznesenskii called the problem of
autonomous control, is solved in [11/ for the case of a plant where
each variable is described by a first-order differential equation; ideal
(inertialess) controllers are assumed. The followers of Voznesenskii
have extended the noninteraction conditions to more complex cases
/5, 6, 18, 52, 54, 55, 59/. It should be emphasized that the noninteraction
problem is figured as the main topic in most studies in the field.

Boksenbom and Hood were the pioneers of multivariable control theory
in the USA. Their first paper /77/ published in 1950 deals with various
aspects of the noninteraction problem, previously treated by Voznesenskii.
The application of matrix algebra enabled the authors to essentially simplify
the expressions for noninteraction conditions, without restricting the order
of the differential equation that describes each of the controlled variable.
The studies of Freeman /78, 79/, Kavanagh [81, 82/, and others concerned
with more elaborate aspects of noninteracting systems were a direct out-
growth of the fundamental study of Boksenbom and Hood, Kavanagh
considered not only noninteraction, but also some other quality indices.
Golomb and Usdin /80/ developed the theory of multivariable servosystems;
they introduced the matrix of error coefficients and derived an explicit
expression of this matrix for multidimensional servosystems.

Sarachik /21/ considered some properties of nonlinear multidimensional
servosystems. He analyzed in considerable detail the properties of a
two-dimensional servosystem and described methods of construction that
satisfied his optimality test. Multivariable control is also the subject
of /15, 83, 84, 85/. Thebookby M. Mesarovié¢ deserves special mention /85/.
This was essentially the first book in multivariable control theory; moreover,
Mesarovié was the first to consider multivariable control as an independent
problem, and not as an outgrowth of the theory of single-variable systems.
He advanced a number of highly original ideas concerning the applicability
_of variational techniques to the design of multivariable systems.

Among the more recent contributions to multivariable control theory
we should mention the publications of A. A, Krasovskii /22, 23, 24/,

V.T. Morozovskii /48, 49, 50/, V.A. Venikov /9/, L.V. Tsukernik /69, 70/,
G.V. Mikhnevich /46, 47/, and others, Numerous papers on multivariable
control systems have been lately stimulated by research in nuclear-reactor
control /12, 45/. On the whole, however, the multivariable control theory
is still at the very first stages of its development.

In writing this book I did not try to cover the entire range of problems
treated in multivariable control systems. My principal aim was to provide
the reader with an introduction to the modern tasks and problerns of
multivariable control theory and to draw the attention of the specialist
to some of the important problems that deserve further study.



Chapter One

EXAMPLES OF MULTIVARIABLE CONTROL SYSTEMS

§1.1. AUTOMATIC GAGE CONTROL IN
CONTINUOUS ROLLING

A functional diagram of a continuous cold-rolling mill is shown in
Figure 1.1, The same mill, but without a coiler, is used in continuous

hot rolling.
' (‘ ORI ONER (O
(CAN ORI OO CENG

FIGURE 1.1. Schematic of a continuous rolling mill.

The roll mill stands are placed sequentially one after the other.
Pressing screws on each stand alter the position of the top roll and thus
adjust the clearance between the working rolls. The strip gage can be
altered by changing the roll gap, as well as by raising the rolling tension
{(up to the yield point). Both these control techniques can be applied
simultaneously. In automatic gage control, the pressing screws are
regulated by a roll positioning system, whereas the tensile stress is
adjucted by appropriately modifying the main drive velocities.

It is fairly obvious, however, that these two groups of control
systems are interconnected through the rolled strip. A particularly
pronounced interrelationship is observed in hot rolling mills, a fact
which follows from various experimental data, The effect of stress on
strip gage is evident from the bulging
of the head and the tail of the piece,
where the rolling tension is nil.

Figure 1.2 is a block diagram of
an automatic roll-gap control system
D for one of the mill stands. Similar
systems are provided in each stand.
Hydraulic dynamometers under the rolls
act as thickness gages, and looper gears

-Q— between the mill stands measure the
£, stresses (not shown in Figure 1.2). For
the sake of generality it is assumed that
all the mill stands are equipped with hydraulic
FIGURE 1.2, Block diagram of strip dynamometers and that stress measure-
gage control in one of the mill stands. ments are taken between every two stands.
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Let us consider the general control relationships for a rolling mill.
The equation for the entire mill can be obtained by writing the equations
for each stand with appropriate front and back tensions. *

Consider the equation of the i-th stand. The physical properties of
continuous rolling are described by the following relations:

. D DA,
MSi:M”_'QTlifl.l+l+mi—lfl,i—h (1-1)
Vi=yn 146, (Fiy 00— Fr, =01 (1.2)
t
Af1,1+1=01f(AV;,lH—AVI)dt» (1.3)
0

1D (14 So)) o — B

where y= 7 =T
In these equations
M, = the reduced static torque in tension rolling,
M., the static torque in tension-free rolling,
n; = the velocity of the motor,
fi. 1+1 = interstand tension,
V; = strip velocity on entering the stand,
V; = strip velocity on leaving the stand,
D, = roll diameter,
/ = motor-to-roll transmission ratio,
H, = strip gage after the i-th stand,
Q; = strip cross section,
E = modulus of elasticity of the rolled metal,
l;, ;41 = interstand distance,
S, = forward creep in tension-free rolling,
b, = forward-creep coefficient,
Under steady-state conditions the strip enters the i-th stand at the
same velocity that it leaves the {{-1)-th stand.
From the constancy of the per-second volume in rolling we can find
a dependence of the strip tension on the main drive velocities of the
nearby stands. Assuming constant strip width, we find

Vi, =HV,. (1-4)

Inserting for V; and V,., their expressions from (1.2) and solving (1.4) for n;,
we find

Yoot af [V by (i, = Fieg, 124)]
n; = : 2 . 1.5
: YH L6, (F =iy, )] (1.5)

The differential equation of motion of the electric drive can be written
in the form

g%ﬂ%:M{m—Ml res =ern_(Msi‘_M,|[). (1'6)
The motor torque M; , is found from the relation

M, . =C, @ ,,. (1.7)

* A rolling mill as a multivariable plant is considered by N.P. Druzhinin /13/ and A.A. Fel'dbaum /66/ .




For a Ward —Leonard machine with constant exciting current we find

Ui=Lia%+Rallla+Cel®1ni’ (1.8)
whence
Uy—C,0,
Mim=Ctiq)i[_d#n—" : (1'9)

LlaE"'Rl a
Substituting (1.9) in (1.6) we have

GD? dn Uy — C,in
w5 @ = Culi— e —m,, (1.10)
Llam"‘}"R[a

where

’
mi=Ms1—Ms1.

The resistance torque depends on a number of factors. From the theory
of plastic deformation /13/ the pressure on the rolls is given by

P=P[Ri’ (Dli u'[v Fih F,’zy Hjh fijiv Ki]y (1.11)

where P is a nonlinear function of the relevant parameters, R; the effective -
roll radius, H; the ingoing gage for the i-th roll, H; the outgoing gage,
Fu the back tension on the strip, F; the front tension, ®; the contact arc,
pi the friction coefficient.

The rolling torque is a function of the same variables and roll radius,
It is expressed by another nonlinear function, thus:

/M,-:M[R,', R;, (Div Wi Fllv Fl?’ Hilv Hi?! K:] (1'12)

For small increments of the variables in (1.11) and (1.12), assuming
R, R, ®, n, and K to be constant, we may write

__ep P, P P
dp——aﬁ., dH“+_—0H,, de—{——oF“ dF“-;--——dFi2 dF,, (1.13)
and
oM; oM oM, oM
dMi= OH;I dHil + l7H1; dHi2+ 0[:“1 dFil+ aFi: dFl?' (1 14)

Using lower-case letters for the small increments and constant
coefficients for the partial derivatives, we write

AP = Kshyy + Kighin—+ Kigfn + Kif e (1.15)
Am = Kishy + Kighiz + Kiaf + Kigf iz ' (1.16)
where
__op _op, __op 0P
Kll_o_[-[“_’ Ki2—mr Kis——m. K“_‘Txi'
oM, oM, oM, oM,

Ko=73m, Ke=3p, Ko=3r-+ Ke=<pt-
i i2




Equations similar to (1.15) and (1.16) can be derived for all the mill
stands. In addition to the individual stand equations, there are also
coupling equations which describe the continuous operation of the entire mill.

We use the following notation: primed quantities describe the state of
the ingoing strip, lower-case letters denote small increments, and absolute
values are represented by capital letters subscripted with a zero.

The increment of the loading torque in the i-th stand is written from
(1.18) as

Mgy = Kighy — Kigh, — Kipf; 3= Kigf o3 (1.17)
the continuity equation is
(Viot+ o) (Hio + ki) = (Vio+v) (Hio + h). (1.18)
The change in strip tension due to elastic deformation is written as

d s
L=, (V;,,— ), (1.19)

where C; is a constant.

The velocity of the ingoing strip is higher than the linear velocity V, of
the roll surface. It is given by the relation

V=Vl 8) = Vil +Sot-8)=V, (1459 (1 + 5. (1.20)

where § is the forward creep, dependent on strip tension, S, the forward
creep in tension-free rolling. In the linear approximation the forward
creep as a function of tension is given by the relation

S=b(1+4S;)AF. (1.21)

From (1.20) and (1.21) we have

DN .,
V=V (1480 (14 80AF) = g (1 +-S) {145 (F, — F,_y). (1.22)
Linearizing,
V1=An1+B(fl_fi—l)! (1-23)
where

A=mﬁ(610;"@ and B=AN,

A section of the rolled strip emerging from the given stand reaches the
next stand after a certain time lag

4
=y (1.24)

where /; is the interstand distance, V; the strip velocity. Thus,

by (@) =hy_ (t —7,), (1.25)



and making use of (1.25) we write for (1.17)
Mg = Kighi—1 (¢ — ) — Kighy & Kig1 -1 — Kiafr. . (1.28)

Let

GD* R, L, R 1
375 C,Cedﬂ_‘T" T?:—T" C‘C¢®’_K’ c,,m—Km'

We write the following two equations in Laplace transforms:

[7:p(1+T,,p)+ 12 (p)=
=KUg, (p)—-K; (1 +T;,0) Kse™ " Ph (p)+ K (1+T,,0) Kigh, (0)—
—K; (14T, .p) Kigf 11 (P) + Ky (L 4 T14.2) Kiaf 1 (D) (1.27)

and
pi(p)=CAin; . (p)—C An, (p)+C,B/f, 11 (P)+C.B/f;_1(p). (1.28)

Substituting f,(p) from (1.28) in (1.27), we find

(T2 +T.pln(p)=
=K, npUg—K,(1+T,,0) K, gpe_tlpﬁl (r)+
+Kp (14 T1.0)Kishi (p) — K (D) (L 4T, . 0) Kisf 11 (8) +
+K A+ T, N KpCiAn 4 (p)— K (L +-T,430) Ky :C AR, (D) +
+K, (14T, p) C:BKyf 111 (P)+K, (14T, 0) KsC,B/f 11 (p)- (1.29)

After simple manipulations we have

7. PPA+T,. 0+ p+KKiCA A+ T o)) 0 (0) =
=K, w U, o (0)+K,[Kiep 14T, 0)—Kis(1+ T, p) pe~"¥] b, (p)+
G+ KiKyCA (L +T,.0) 2y () + KC B Ky 11 (P) +
+ K [(1+T,,p) (KnCyB, — pKi)l f1-1 (P). (1.30)

As a final step in the derivation of the equation of main drive control,
we have to choose an appropriate measuring device and to relate the
main drive velocities to strip tension. Loopers are adequate measuring
devices for continuous hot-rolling mills. In cold-rolling mills the tension
can be found from motor load. Without going into this technical question,
we assume that a suitable device is available for tension measurements.
Then:

(a) tension between the (i+1)-th and /-th stands

fir1 APy =KWy (D) [Pres( D) — 12,11 (P)], (1.31)
(b) tension between the (7 — 1)-th and i-th stands

fi1 (P) = KWy (P) [eet(P) — 1i 1 (P))- (1.32)
The motor voltage U, (p) receives feedback from strip tension measure-

ments. Let Wy(p)be the transfer function of the measuring device and
K,W,(p) the transfer function of the generator, the exciter, and the amplifier




(if any); then
Un (0)=W,(p) W (D) K, [Rtres; (P) — 1, (D)) (1.33)

Substituting (1.31), (1.32), and (1.33) in (1.30), we find

TP 4-T,p)+p+K 1+ T, 0 K;CA+
+Kim2W,(p) W, (p) K. n, (p) —[KK;C A (1+ T,.p)—
—KCB KKy (1+T,.0) W, (p)) 241 (D) +
+K[(1+T,.p(K;C.B,— Kisp)| KsWy (pY -y (p)+
+K; [Klﬁp(] +T1.0)—Kis (14 Tia.”)[’e—tlp] h(p)=
=W, (P)[Ki P W, (9) K, + 2K 1ty s (P). (1.34)

We see from equation (1.34) that the process of control in the i-th
subsystem, where the controlled variable is n;, is influenced by the
controlled variables of subsystems i—1 and i+1. Each of these variables
niy and n; has its own closed-loop control system. The various mill stands
are described by a set of equations analogous to (1.34) with i=1, 2,..., 6.

One of the components of equation (1.34) — the term h; — deserves special
consideration. If the strip gage is controlled by tension alone, h; is the
external disturbance or load. In some instances of cold rolling A; may
therefore be considered as a load on the tension control system, whereby
h; is maintained between certain predetermined limits. In the general
case, when the strip gage-is controlled by simultaneously adjusting the
tension and the reduction, special control subsystems are provided for 4;,
The number of these subsystems is equal to the number of stands with
reduction control. In cold rolling mills reduction is normally controlled
in some three or four stands, and equations (1.34) are then supplemented
by reduction control equations. If reduction control is instituted in only
part of the stands, #; remain in some of the equations in (1,34) as loads.

In continuous hot-rolling mills the gage is best regulated by appropriate
reduction control; the tension should of course be maintained constant.
Minimum tension is required, but it must be sufficient for strip centering.
The process of gage control for a hot-rolled sheet can be investigated
using equations (1.27), (1.28); these equations are solved for tension,
which is presumably maintained constant.

Let us consider the equations that describe the controlled positioning
of the pressing screws. The corresponding equations are equally applicable
to both cold and hot rolling mills.

The screw positioning system has an actuator, a Ward —Leonard d.c.
engine, say. Figure 1.2 is a schematic diagram of the roll-gap control
system. The input is the reference gap,value H.. The equation of the
measuring device is

U 4 i=Wdzl(p)[Hird—Hl]' (1-35)

The output of the measuring device is delivered to an amplifier and
then to a generator. The equation of the amplifier and the generator
is written as

Um1=KarllVg:(p)Uoux d I (1~36)



Now consider how the motor runs when the strip undergoes reduction.
The torque equation is
aD?

P =C O, — M,,, (1.37)

but the pressure on the rolls and the corresponding resistance torque
sensed by the motor are given by

My =Py (1.38)
where P; is defined by (1.11); rieq is the equivalent arm which, together

with the force P;, produces the resistance torque on the motor.
By analogy with (1,14), we write

oM 4y OM;. OM ¢ oM,
AMsri= oM, A['{;x‘*_Wu'AI-[:?""_T“AF:I'{" oF AF;‘Z' (1-39)
and equation (1.37) takes the form
GDzrl Uml—Cerlorl"rt
an:cuiq)rl Larlp+Rarl —AM!II
or 2
GDY, Up;—C,0n,,
3 PR H =~ —

_KmiAHI{_KlIOAHi2‘K11 AF[I-—K12AFi2'
After simple manipulations, making use of (1.36) and (1.35), we find

1T (O +T,,,p) pK, ,+K, P+HKn K, IWgrl(p) W (PN H, (p)=
=Kn lKulel » Wdri(p)Href(p)_arl 1+ 7(;“ P)Kn MMy, +
+ KioAH, + H | AF, + Ky AF ). (1.40)

The screw positioning equations for the other stands are obtained by
assigning an appropriate value to the subscript i, For a three-stand
system, i=1, 2, 3,

In equation (1.40), H, is in a sense Hiy and H,=Hyy. AF,and AF, are
the coupling terms interconnecting equations (1.40) for i = 1, 2, 3 with
equations (1.34) for i=1, 2, 3, 4, 5, 6.

We have thus obtained two sets of equations: one describing the positioning
of pressing screws and the other main drive control. Jointly these equations

describe, in the linear approximation, the dynamics of gage control by
simultaneous regulation of roll gap and rolling tension,

§1.2. A COMPLEX POWER SYSTEM AS A MULTI-
VARIABLE CONTROLLED OBJECT

By a complex power system we mean a quite general configuration of
power generating stations in a grid of arbitrary load. Each power station
individually is a complex system comprising a few or even a few dozen
powerful synchronous generators and other equipment. For the sake of
simplicity each station is replaced in our analysis by an equivalent



synchronous generator and an equivalent prime mover, Numerous studies
/46, 47, 69, 70, etc./ have shown that this substitution is fully permissible
in many practically significant cases. It is further assumed that each
equivalent generator is excitation-controlled and the equivalent prime
mover (a steam or hydraulic turbine) is provided with speed control.
Furthermore, all the machines except the first have secondary frequency
control. Figure 1.3 is a block diagram of one element in a complex
power system which comprises n equivalent units (prime mover and
generator). We will derive an equation of the system for the case of
small deviations of the controlled variables from a preset operating mode.
The active and the reactive impedances in the system are assumed constant
during each particular transient.

transmission |
line l

FIGURE 1.3. An {-th'unit of a complex power system.

We start with the equations of the various components of the i-th
equivalent unit.
1. The equation of motion of the i-th equivalent unit is

dAw;
T =AM, (1.41)

4y
where /; is the reduced moment of inertia of the unit, Aw; the change in
frequency, AM; the torque increment.
The torque is made up of two components: the actuating torque and the
resistance (generator) torque; we may thus write

AM, =AM, +AM,,, (1.42)

where AM;; is the change in generator torque, AM;, the change in actuating
torque.
The resistance torques are expressed by the functional dependence

M=M,®, 820 -y 80y Egpts + v Egiar 01y 0y -y 0) (1.43)

and
n

=B~ B az, - $ M, (14)

where 8:; are the phase angles between the free-running e. m.f. of the
k-th generator and the voltage developed by the i-th generator (which is
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regarded as the leading generator), Ey is the free-running e.m.f. of the
i-th generator, Aws is the change in frequency for the k-th generator. If
the first generator is regarded as the leading generator, the phase angles
in the equation for any i-th generator should be reckoned from the e.m.f.
vector of the first,

A1l partial derivatives in (1.44) are found from the corresponding static
characteristics. Replacing them with appropriate constant coefficients and
making use of (1.42) and (1.44), we write (1,41) in the form

dA ;
J; L= ZalkAbik.—E ﬂmAEk—‘ZszA(Ok‘FAMu
or
d
J; Awi + v, Ao, = —Eambzk—Zﬁ,k AE, — Evikmk+AM1a (1.45)
el
Here
oM, oM;

2. The equations for the phase angles 9, are

Ady = [ (Ao, — Aoy dt

or

d AY;
Bit — Ao, — Do, (1.46)

Equation (1.46) clearly remains valid when the e.m.f. vectors of all the
machines are reckoned from the e.m.f, vector of the first machine.

3. We now derive the equation of the motor's excitation circuit, It is
assumed that the synchronous generator is excited by a special exciter.
The fast electromagnetic processes in the stator circuit of the synchronous
generator are ignored at this stage.

The transient in the rotor circuit of the i-th generator is described by
the following differential equation:

dE,
Ee=Eig~+ Ty d;d ) (1.47)

where Tip is the time constant of the excitation circuit, E;; is the e.m. f,
across the synchronous reactive impedance.

If no voltage control is provided, E, is constant. In voltage-controlled
generators E;, depends on the parameters of the excitation circuit, the
exciter, and the voltage control system. For small deviations equation
(1.47) takes the form

d AE,
AE e =BE;;+ T o~ (1.48)

4. Let Wy (p)be the transfer function of the exciter and voltage controller,
The relationship between AE;,. and the change in voltage at the generator

14




terminals is then written as
AE . (p) =Wy (P) AU, (p). (1.49)

The voltage at the generator terminals is measured, and not the free-
running e. m,f. Another expression is therefore required, relating the
free-running e, m.f, to the voltage at the terminals.

FIGURE 1.4, Vector diagrams of a synchronous machine.

From the vector diagram (Figure 1.4) we may write
E;d=Eid*(xid—xzd)Tld (1.50)

and
U?=(Ed— I_idxld)z—{—-i%qx?q- (1.51)

Here x;, is the transient reactive impedance of the generator, xi; the
reactive impedance of the generator along the longitudinal axis, x;, the
reactive impedance along the transverse axis, /i the longitudinal component
of the stator current, /;, the transverse component of the stator current,

We further assume for the sake of generality that the generator being
considered is a salient-pole machine; then for the current components
we write*

E E,
Q1 14
ljq7=—5 - cOs & — —=COS (— & —0yy), (1.52)
7 Ey Eya .
[iq=_z%‘51““1;""—2%51“(‘—611—“11)- (1.53)

Here Eg: is the equivalent e.m.f, of salient-pole generators:
qu=AEm+BEw cos (— o, —ay). (1.54)
The constants A and B are expressed in terms of the generator parameters:

?
1+ Xig— *1a
Xid — Xig

A= ,

’
Xig—Xid cos oy ,
Xyq— X
Zy ( id d)

Xid — Xig

* Detailed derivation of these equations is given, e.g., in /47, 69/.




Z
B Py colsla
14~ %14 il ’
+ Zn (*1a— x2)

Xid— Xiq

where is the self-impedance of the substitution circuit between the i-th

and the 1st generator (Figure 1.5), Z,; is the mutual impedance of the
system between these generators.

Zi*l

7

FIGURE 1.5. Diagram of impedances.

Substituting (1.52), (1.53), and (1.54) in (1.50) and (1.51) and linearizing,
we find after simple manipulations

AE,;=V, 88, +Q,AE,, (1.55)
AU, =L, As;+ N, AE,, (1.56)

where

14
Xy qg— X
id id
Vi=1——5—"Acosaq,,

Zy
Bceosa, 1 \eas
Q= (*1a— *14) o (-—leL - "ZT) sin(—8,, —a,,),
U . B cos oy 1
L‘-=2—U%{Emsm(——6u—a”) [2 _Z'U—_T“‘]xld_"
24x%, cos ay (Bcosa“ 1 )
- Zy Zu Zy +
U,ox? Bcosay, 1
sin2(—6;,; —o; LU 2 — i
+ (—8, ,1)[ 7z 10¥ia Z, Z
1 A A?
N, = [25,,,(1 — 2, 7, oS +—27cos a”x’;’d) —

B cos ay 1 ) g €O au)
— Uy cos (— &, —ay) (“Z,, —Zr (2-"14—2"14—‘2” .

5. The equation of speed and frequency control for the i-th generator is
A, =R, (p) Aoy (1.57)

We have thus obtained the following set of equations describing the i-th
generalized unit:

(Vi) Aoy = —glazk As,, _kglﬁik AE, — nglvm Ao, 4 AM,,, (1.58a)
ki
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PAS,, = Ao, — Ao,

AE se=AEq + Tinp AE,

AE ;o= Wy (p) AU, .
AL, =V, 85, +Q, AE,,
AU, =L; A8, +N;AE,,
AM, =R, (p) Aw;.

(1.58b)

These equations cannot be simplified unless we have decided what the
controlled variables of the system are. Asfarasthe quality of the generated
electric power is concerned, the frequency and the voltage must be
maintained constant. In some cases, however, stability considerations,
say, suggest that the phase angle 6i should be controlled. This approach
is also advisable if the voltage of the generalized units (power stations)
is controlled via the phase angles és using remote phase meters. The
controlled variables are therefore the frequency w:, the phase angle Adu,
the generator voltage U;, the e, m.f. of all other generators E;, and the
frequency of the other generators o,(k +i).

Eliminating Eis, Ew, and Ei. from (1.58), we obtain the following set of
equations for the i-th unit:

(ip+vi)oe, = —122_3] 0y, DDy, —gl Bin AE, — kz Yi)e Ao, +AM,,,
- - k;éi‘
P A, = Aw, — Aw,,
L L
T (Vz—%L)FAéik"WfAézk+ [ (1.59)
1
+[Tid0 %P‘FTI— W, (P)] U,=0,
AM; = R, (p) Aay,
AM;, =KAM,.

Similar sets of equations can be obtained for the other generalized units
of the complex power system. The entire power system is described by
equations (1.58) with /=1, 2,..., n. If some units have no frequency or
voltage control, the corresponding terms vanish,

The coupling in this case is twofold. First, in each individual unit the
generator voltage (or e.m.{f.) is sensitive to variations of frequency and
speed. Each unit thus constitutes a multivariable interacting system.

But the coupling goes further: the processes in the i-th unit affect all the
other units of the power system as a whole.

§ 1.3. A RECTIFYING COLUMN

A rectifying column is a very common installation in petrochemical
and gas industries. From our point of view a rectifying column is a
typical multivariable plant representative of a whole class of industrial
processes adapted to automatic control. We therefore proceed with a
discussion of some elementary properties essential for the understanding
of the physical foundation of the rectification process and then give detailed
mathematical treatment of some simple cases. Although there is a



considerable variety of rectifying columns, they all operate on the same
principle and can be described by identical mathematical equations.

Rectification is a kind of distillation, i.e., separation of a liquid
mixture into constituents which have different boiling points. Rectification
is carried out in such a way that an ascending stream of vapor comes in
contact with a descending countercurrent of condensed liquid, i.e., the
base of the column is heated while its upper portion is cooled. A schematic
diagram of a rectifying column is shown in Figure 1.6.

g Y/
/4

E_IJW\.__;
T 5
&

FIGURE 1.6. A rectifying column for the separation of a
binary mixture:

1 column, II condenser, III accumulator, IV reboiler;
1) crude feed, 2) overhead product, 3) bottoms, 4) vapor,
5) reflux, 6) vapor-liquid mixture, 7) vapor phase,

8) liquid phase, 9) water, 10) gas out.

The main element of a rectifying column is the packing, namely plates
or trays on which the vapor comes in contact with the liquid phase. The
vapor is thus enriched with the low-boiling component, and the proportion
of the high-boiling component in the liquid also increases. A functional
diagram of a bubble-cap plate is shown in Figure 1.7.

FIGURE 1.7. Functional diagram of the rectifica-
tion process:

1) column wall, 2) plate, 3) cap, 4) liquid, 5) vapor,
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Depending on the composition of the crude feed, we distinguish between
columns for separation of binary mixtures and columns for separation of
multicomponent mixtures. The calculations for multicomponent rectifying
columns are substantially more complicated, and the corresponding
processes have been poorly studied.

(a) COLUMNS FOR SEPARATION OF MULTICOMPONENT MIXTURES

A binary column is that where the finished product is only the overhead
distillate or the bottoms. Automation of binary rectifying columns should
be implemented with due regard to the industrial objectives and the
engineering aspects of the process. The following cases can be distinguished.

Case 1. Product concentration higher than required. Losses less
than permissible.

The goal is to make the product as pure as possible and to produce as
much of it as is feasible, irrespective of power requirements.

Case 2. Product concentration higher than required. Optimum
power consumption.

A very-high-purity product is to be separated, but its quantity is
determined by power losses from cooling water and vapor.

Case 3. Product concentration not lower than the stipulated figure.
Uniform product efflux. _ '

The distillate constitutes a feed to another industrial process, so that
excessive fluctuations of product discharge are undesirable.

Case 4. Optimum economy irrespective of product concentration
and quantity.

The input and output variables of the rectifying unit illustrated in
Figure 1.6 are shown to first approximation in Figure 1.8. Note that some
of the input variables in Figure 1.8 are interrelated. For ‘example, achange
in the quantity of feed affects the condenser operation and the reflux temper-
ature is altered; a change in the pumping rate of the overhead product
alters the quantity of reflux, etc.

FIGURE 1.8. Schematic diagram of the variables
in a binary column:

7 7 . o
1) quantity of feed, 2) composition of feed,

Z > —7 3) temperature of feed, 4) reflux flow rate,

J ——— ——— 2 5) reflux temperature, 6) pumping of overhead

[P —— EE——— product, T) pumping of bottoms, 8) water flow

5 7% rate in the condenser, 9) vapor flow rate in the
reboiler, 10) top plate temperature, 11) bottom

§ ———— ——— ]

] plate temperature, 12) #-th plate temperature,
77— — 13) composition of overhead product, 14) com-
8§ ——— - 77 position of bottoms, 15) composition of mixture
g V.4 on the bottom plate, 16) liquid level in the

accumulator, 17) liquid level in the reboiler,
18) pressure in the column,




A simple rectifying unit for the separation of binary mixtures is thus
a multivariable plant with numerous inputs and outputs. Complete descrip-
tion of the column requires knowledge of the relationships between the inputs
and the outputs shown in Figure 1.8,

One of the main paths is the ''feed composition-to-product concentration',
Analytical and experimental (using laboratory rectifying units) studies of
this path were published by various authors /83, 84/.

The equation of each plate is derived proceeding from the material
balance of the low-boiling component. Under certain assumptions it has
the form

(Tpp+1)Cr= KpCpoi -+ KopCris (1.60)

where % is the plate number, Ky, Ku the gains, T, a time constant, C,
concentration deviation of the low-boiling component on the %-th plate.
The equations of the condenser, reboiler, and feed plate differ only
in the number of terms entering the right-hand side of (1.60). The
constants T, Ky, and Kx depend on the velocity of vapor and liquid streams,
the form of the equilibrium curve interrelating the composition of the vapor
and the liquid phase on each plate, and the liquid mass on the plate.
Equations (1.60) ignore the hydrodynamics of vapor and liquid streams,
This omission is rectified with the aid of the equations
P+ Ly=Ly,, ] (1.61)
(mp+1)V,=V,_,

where V; is the flow rate of vapor rising from the k-th plate, L: the flow
rate of liquid dripping from the k-th plate, t and v are the corresponding
time constants of the k£-th plate.

Putting £=1,..., n, we obtain a set of equations for this simple binary
column. We wish to stress again that the equations were obtained proceeding
from the material balance of one of the components.

(b) COLUMNS FOR SEPARATION OF BINARY MIXTURES

Rectifying towers for fractionation of petroleum products are much more
difficult to control than the previously considered simple binary columns.
As we have noted, distillation in binary columns is mostly described by
three inequalities:

Cbz<cb13'
Co<Cus (1.62)
D> D,

where C,, is the content of the bottoms component in the overhead distillate,
Cys is the content of the overhead product in the bottoms, D the separation
factor. The subscript 3 denotes the standard reference values of the
corresponding quantities,
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A vacuum distillation column for multicomponent mixtures is described
by considerably more numerous constraints. The more obvious of these
are the following:

Tlh > Tu, 3¢

Teb < Teb 3

Than> Toagns (1.63)
V< Vy
C>Cy
D> D,

where Ty, is the lower boiling temperature of the fraction, Te is the end
boiling temperature, T,,the flash-point temperature, V the viscosity of
the fraction, € the color of the fraction, D the separation factor.
This set of constraints is of course applicable to each withdrawn fraction.
A characteristic feature of a vacuum distillation column from the point
of view of a control engineer is that its optimum operating conditions are
characterized by a generalized index which is a functional of numerous
controlled variables (reference values and other quantities). Optimal
reference values are determined by the industrial plant conditions. If
the distillate is a marketable product, optimization is impossible without
knowing the dependence of cost and market price on product composition.
An optimality test is provided, say, by the profit amassed in time T,
If the dependence of profit on product composition is a function with an
extremum, the column is optimized if
a maximum profit is ensured. If the
distillate requires further processing

/4 before it can be marketed, we must
7 know the relationship between distillate
n 7 composition and the cost of subsequent
7 processing. It is thus clear that
:_, 4 constraints (1,63) constitute only the
7 first step in the development of optimum
7 E | 5 control systems for rectifying towers.

However, in general, as the constraints
(1.63) approach equalities, the operation
of the column under the given set of
conditions becomes progressively more
economic,

The static and the dynamic character-
-5 istics of the column are required for the
solution of the problem before us. In
what follows we derive an equation relating
the mass flow of the feed and the product
to temperature conditions in the column.
condenser; 1) feed, 2) superheated vapor, 3) 1st This staterr?ent o_f the prob1e¥n %s under-
fraction, 4) 2nd fraction, 5) 3rd fraction, standable since in most rectifying towers
6) bottoms, 7) reflux, temperature is one of the controlled

variables,
A technological diagram of the column
is shown in Figure 1.9. The tapped products are the 2nd and 3rd fractions
and the residuum. -

Ve

FIGURE 1.9, Column for separation of a multi-
component mixture:

I column, I accumulator, Iil barometric
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The automatic control of these columns constitutes a complicated protlem.
With binary columns no more than two or three constraints had to be satis-
fied (e. g., concentration greater than reference, losses less than reference)
while in vacuum distillation columns the number of constraints is much
greater.

The five principal constraints for each fraction are the following:

1. Lower boiling point higher than reference.

. End boiling point less than reference.

. Viscosity less than reference,

. Flash-point temperature higher than reference.
. Color stronger than reference,.

The "controllability” of the column thus becomes a very topical question.

The interrelationships between the column inputs and outputs are
indicated in Figure 1.10, which shows only the most important variables,
Block diagrams of the rectifying tower are given in Figures 1,11 and 1.12.

>

O W N

f R—— g FIGURE 1.10. IHustrating the inputs and outputs of a multi-
2~ 77,” component column:

S o— F——— 12 1) feed flow rate, 2) feed temperature, 3) feed viscosity,

[ — 17 4) reflux of 2nd fraction, 5) withdrawal of 2nd fraction,

F P— H}; 6) reflux of 3rd fraction, 7) withdrawal of 3rd fraction,

6 — ) % 8) vapor flow rate, 9) lower boiling point of 2nd fraction,

7 . — 7 10) end boiling point of 2nd fraction, 11) viscosity of 2nd

. /F fraction, 12) flash-point temperature of 2nd fraction,
¢ 19 13) color of 2nd fraction, 14, 15, 16, 17, 18) ditto for

20 3rd fraction, 19) temperature of 2nd fraction, 20) temper-

27 ature of 3rd fraction, 21) temperature on k-th plate,
22 22) liquid level in the accumulator, 23) bottoms quality.
23
G,
24 ”7 4
o1 X Ny=24
23 ny 7
72 Lo X/'": j
27
6g-2
20 M,
lg-2 > 19 Ne ﬁ’ X’”z —— M,=20
78 Xn Np=19
77 A
75 K y
& M n-7
% ? fyp—
27
2
Gy /AN
-t 10 X g M, =11
g 5 J
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FIGURE 1.11. Ilustrating the derivation of equations FIGURE 1.12, lustrating
for a multivariable column, the derivation of equations

for a multivariable column,
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Nomenclature:

Gy, Gy, Gy =
G, Goo

T Owxs

the withdrawn quantities of each fraction;

the quantities of reflux for the corresponding fractions;
gas flow into the barometric condenser;

plate number, reckoned from bottom to top;

number of plate from which the fraction is withdrawn;
number of the reflux plate;

= deviation in mass flow of feed;

= deviation in temperature of feed;

deviation in temperature of liquid phase on the k-th plate;

liquid level deviation on the k-th plate;

temperature of liquid phase on £-th plate;

temperature of vapor phase on k-th plate;

temperature of reflux;

flow of liquid dripping from &-th plate;

flow of vapor rising from k-th plate;

slope factor of the straight line approximating the temperature
dependence of the specific heat of liquid;

slope factor of the straight line approximating the temperature
dependence of the specific heat of vapor;

mass of liquid on the plate;

level of liquid on the plate;

accumulator surface area;

column diameter;

liquid density;

symbol of deviation.

Assumptions adopted in the derivation of equations

1. The feed is liquid at its boiling point,

2. Temperature variation on the plates does not affect the velocity of
the vapor.

3. Vapor and liquid temperature deviations on the £-th plate are
related by

OT, =k ¢,

4. Total condensation occurs on plate N, (G,=0).

5. The delay of the vapor on the k-th plate is negligible,

6. Change in level is negligible on all plates, except M,.

7. Lui,=0, since in this column the downpour from the 20th plate is
quenched.

8. The effect of water steam flow on column temperature is negligible.

9. The hydrodynamics of the liquid is ignored.

In the mathematical part we use the well-known equations of heat balance.
We consider several cases.
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Case 1. The equation of the k-th plate.
The equation of statics (steady-state conditions, see Figure 1.13) can
be written in the following form:

Vp il T 1 — 05 T + Lyogtenn— chlqtk =0.

The equation of dynamics:

Uy 1y (Ty1 8T o) — Uity (T 43T+

F Ly 0L i) 0 (bpar+02p ) —

— (LytOLy) oy e+ 0ty = A ZE,

where A=rmc,.

Uy Ly
A
Y-t Ly

FIGURE 1,13, lustrating
the derivation of equations
for a multivariable column.

Seeing that the liquid flow in the given section may change only due to a
change in the quantity of reflux, we may write

0Ly =08Lyy1=8Lp 1~ Xy

In view of assumption 3 above

0T, =k bt, ~ kX,

Passing to an equation in deviations, linearizing, and Laplace-trans-
forming, we find

(akp+1)Xk=kak—l+cka+l+k3kXin3' (1.64)

where

A
LW P W Ty
bk — cvkvk_l
Cgle -t cvhyy ’
.= Clglpaa
BT egl+ cokuy

_ Sgrr—t) : . .
gy _q—cqu,,—i—cvku,, dimensional gain factor.

the time constant of the k-th plate,

nondimensional gain factors,

Equation (1.64) is sometimes conveniently rewritten as

X+ 8, X414 06X 01 =Var X3 (1.65)
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where

__b—k o =_.._Ck_ ¥ =~_.k3k
app+1" £ ap+1"’ T 10

Br=

Case 2. The equation of the N,-th plate (Figure 1.14);
VpyetCy (Tpyer +0T ) — Ul (T, 0Ty )~

— Ly, +OLn,) €1 (¢w, + Bfw) ++ (Goa+ 8Goa) 1 (foa—+ Bon) = iN’-.

dt

t) —e
2

FIGURE 1.14, Ilustrating
the derivation of equations
for a multivariable column.

Acting as before and seeing that

dos ~ X'ina
and
8Goo=08Ly, ~ X3,
we find
- .
@w, P+ 1) Xn, = by, Xny-1+ kaw, X 3 B3, X 1n
where
_ A
an, = Ciolpy, T CkUy,
by — c,,kaz_l
N2 Ly, T cokuy,
N, = 0,
P (fo2—tn)
3N, C]qLN2 -+ cvka, !
S €19Go.2
kan, = :

Cigly, +c oy

Case 3. The equation of the M,-th plate (Figure 1.15).
The equation of dynamics: ’

Oy (Tt 8 4y1) = U\ (Tar, + 0T )+
(L1 +8La 1) O (Eat 11 -0 mps1)— (Lt ~-OLps,) C1q (bt~ 0 m) —

dt
— (G2 +8G2+ Goo+ 8Gos) 0iq (Em,+ Ot m) = -d—tM’ .
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T
Yo, L/vz *
7777,

z
g1 "y G*6p2

FIGURE 1.15, Illustrating
the derivation of equations
for a multivariable column.

Acting as before and seeing that

600.2=6LM2+1 ~ Xin 3

and
602 _ 6LM2 ~ Xm 4y
we find
@uP+ 1) Xp,=bp Ko 1 e X oyt L
where

A

@1, Cq (O F GoaF La) T ok, ’
by = cRUy, 1 '

¢iq (Gy+ Goo+ L)+ Cokuy,

. = gl

M0 (Gyt Gog+ L)+ ook,
bo, = Cig (Catr1 — ) )

€ (Gp+ Goo+ L)+ ¢, kvy,

Case 4, The equation of the &-th plate (M; > £ > Ms).
The equation is derived precisely as in Case 1. Seeing that

oLy ~v—Xin4,
we obtain
@p+ D)X +0, X1+ e XpritlpXnw

where

by = Salte T tee)
4k cquk + ek

Case 5. The equation of the M,-th plate (Figure 1.16).
The equation of dynamics:

VpgyiCo (Tt 0T ) = O 8, (T, + 8T )+
+ (L + 6LM,+ 1) Cy (Em1 —+ 0fm 4 )—
— (Goa+ 8Goa + G1+4-0Gh) 0 (£, ~+0tn) =

= Cqup
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FIGURE 1.16. Illustrating
the derivation of equations
for a multivariable column,

Passing to the equation in deviations, linearizing, and Laplace-trans-
forming, we make use of the fact that

0L+ 1=0C01 ~ X im
and
601 ~ Xin 2

to obtain
clthleph +[Ap+ (GM -+ Gl) e+ '”M,"vk] XM‘ =
=Uy CERXy + I SYRRT:YP. SYRRE ST (Farrr =t ) X 11— EnC10Xin 2. (1.69)

The equation of material balance for this plate is
Fpph‘=—Xln2v (1.70)

i.e., equation (1.68) in fact is a combination of two independent equations,
(1.69) and (1.70):

[Ap+ (G + G)e,+ Uy Cok] XM‘ =
=Ty 0k Yy Ly 16X 417+ 61 (Emrr—Ep) X 1 (1.71)

From (1.69) and (1.70) it follows that the liquid level in the accumulator
is independent of temperature, and the withdrawal of the distillate does
not affect the temperature. These conclusions follow from the linearized
equations; the validity of the starting linearized equation, however,
requires experimental verification.

The equations for the other plates are derived similarly to one of the
cases (1.64) —(1.69).

An analysis of the equations of various plates has shown that the general
equation of the k-th plate may be written as

@ P+ 1) X, =b,X, |+ X, kX 4 E X+
+ kok Xin 3+ kse X 1o 3+ kae Xio 4= kse X in 5. (1.72)

Some of the coefficients in (1.72) may be zero.
The coefficients in (1.72) are the following:
ak:W—ﬁc—kuk’ the plate time constant, Q. being the total flow of liquid
q v

from the plate;
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i c kuy
[— TR o
C1qQs -t cvkv nondimensional gain factors taking into account the
tilpys

Ch= Gy CuFT temperature of the overlying and underlying plates;

ki, ks are coefficients corresponding to the effect of the reflux mass
flow; the coefficients ky (i=2, 3) are defined by the following relations:
(a) for the plate receiving the reflux

k — _Cuale—t) .
ik 0 Qe+ ok’

(b) for any plate in the reflux section, including the plate from which
the distillate is withdrawn,

__ Clg(fprr—1tp) |

i Qe+ vk

(c) for other plates ku=0;

Fi» and ks are coefficients thatallow for the effect of reflux temperature;
the coefficients & (i=1, 3) are defined by the following relations:

(a) for the sprinkled plate

B = G .
=
1qQr -+ ¢k ’

(b) for other plates k= 0;

ks and ks, are coefficients that allow for distillate outflow; the coefficients
by (i=4, 5) are defined by the following relations:
(a) for the plate from which the distillate is withdrawn kin=0;

- _ tlfe—tps)
(b) for any underlying plate &, = Qr oo

Dividing the left- and the right-hand sides of (1.72) by (ap+1}, we find

BeXooy+ X T 0 X = VX T VX G ¥ X st
+ Vi X s T VarX in s VsuXin 50 (1.73)

The equation relating the various column variables is then written as
B.-X=DX,, ‘ (1.74)

where B and D are matrices,

Bl '
fs 1 o
Bz 1 o
1 o,
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Y1,24 VT,zq Y 0 o 0

Vs O 0 0 0 o0
Yo © 0 0 0 0
Y 0 Y3,19 \’;,19 Y Y
D=jo o y,0 o0 o0 i
00y, 0 o
0 0 0 V14 0
00 0 0 vy Y
X and X, are column vectors,
X,
X, Xint
X ={ . and X, ={ -
X Xins
Py

§ 1.4, OIL STRATA WITH LINEAR SEEPAGE

From the point of view of multivariable control, oil fields have much
in common with the controlled objects discussed in the previous sections.
Anticipating, we can say that the common feature for these multivariable
objects is that quality is regarded as a generalized index dependent on a
variety of factors and numerous constraints, so that the control problem
is reduced to extremizing some functional. It will be shown in Chapter Eight

that, under certain additional conditions,
the control of an oil field can be reduced
Formation to extremization of a linear form.,

Crude 0il is a mixture of solid, liguid,
and gaseous hydrocarbons impregnating
a porous medium. If a well is sunk in
this medium, the stratal pressure will
drive the crude oil to the surface.

In order to maintain sufficient stratal
pressure in the production well, water is
pumped into the reservoir through so-
called injection wells which ensure what
is known as secondary recovery of oil.
Bottom Figure 1.17 is a schematic diagram of an
oil reservoir. The output, or controlled
variable for each i-th well is the quantity
of liquid Q; produced. Note that the well
may produce stratal water as well as oil,
and the yield therefore does not provide an unambiguous quality criterion
of well operation. The problem of efficient working of an oil field will be
considered in Chapter Eight, Here we will only derive the control equation
of the reservoir, taking Q; as the well output.

In plan

FIGURE 1.17, Schematic diagram
of an oil reservoir,
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The oil field may have two operating modes:

(a) elastic, when the pressure at any point in the pay rock is a
function of time, other conditions being constant. This is a transient mode,
arising immediately after a certain disturbance is applied to the pay,

e.g., when the well is stopped;

(b) rigid, when the pressure at any point is constant during a certain
time interval, being dependent on the position of that point only.

In the general case of elastic or rigid conditions, one of the main
problems of the theory is to determine the pressure at any pomt in the
oil-bearing stratum and at the face of the well at any time; the size and
the physico-geological characteristics of the field are assumed to be known.

It is shown in the literature /72, 75, and others/ thatthe general behavior
of an oil reservoir is described by the following partial differential equation:

LR ARG b 0

where P is the stratal pressure, k the thickness of the stratum, & the

permeability, p the viscosity of the medium, a?= M’;, ,

storage coefficient of the stratum, orthe so-called piezopermeability,

where B * is the

k—':l=Rhyd is the hydraulic resistance of the medium, F(x,y,2) a discontinuity

function, which is identically zero at all points of the reservoir, with the
exception of the points at which wells are sunk,
For the rigid mode dt = 0 and (1.75) takes the form
d (1 oP 0 (1 opP (1 P
—X(Rhyda_x) E/—(Rhyd W) E(-‘thdw)zp(x’ 9> 2). (1.76)
The problem can be simplified if planar conditions are assumed, i.e.,

the thickness of the oil stratum is regarded as small in comparison with
its extent. The flow of liquid along the z axis can be ignored so that

ap = 0, Equations (1.75) and (1.76) thus take the form
o (1 9P o (1 1 9P
-aT(RhydW)‘*— (th 0!/) =F@ 9+a (1.77)
and
8 (1 oP a1
o (R 7) 3 (7o ) =F &0 9 (1.78)

With boundary conditions of the first kind the pressure

P,=f(x, y, 2
on the boundary is constant, and the pressure drop is thus zero,

AP, =0; (1.79)
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alternatively, the rate of change of the pressuredroponthe boundaryiszero
(boundary conditions of second kind), thus:

d(AP
(dt b)=0

The last case corresponds to a closed oil reservoir.

Solving equation (1.75) or (1.77) for appropriate boundary and initial
conditions, we obtain the debit Q as a function of pressure. The problem
thus reduces to finding P=F,(x, y, 2 f)and Q="Fy(x,y,2,t). For various producing
conditions the debit of the well can be expressed by the followmg relation,
which is in fact the Darcy law of filtration:

AP
C=rman (1.80)

where R(x,y,2)1is the equivalent resistance to liquid flow in a pressure
gradient AP,

If for the first well —R(xl—yz)=au, and there are no other wells, equation
(1.80) takes the form
Qi=a, AP, (1.81)

Consider the case of an o0il reservoir with n production wells. A change
in operating conditions in any of the wells causes redistribution of pressure
in the entire field. For the rigid mode, the behavior of the field is described
by the equations

Qi +apQ+ ... +a,Q,= AP,

alel+an2Q2+ o +a,,,,Q,,=APn,

(1.82)

where a;; is a coefficient that describes to what extent the processes in the
i-th well influence those in the j-th well. Equations (1.82) describe the
behavior of an oil reservoir in the rigid mode from the standpoint of multi-
variable control theory.

In the elastic mode the stratal processes are described by convolution
integrals. In what follows, however, we are only concerned with optimiza-
tion of rigid operating conditions, and equations (1.82) are thus quite
sufficient.
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Chapter Two

MULTIVARIABLE CONTROL SYSTEMS
WITH BASIC ELEMENTS

§ 2.1, INTRODUCTORY REMARKS

In this chapter we consider automatic control systems where each
single-variable loop is built of basic elements only. By basic elements
we mean /39/ the controlled object or plant, the measuring device or
transducer, the controller or regulator and, in general, a number of
amplifiers. Simple systems of this kind are designed for each controlled
variable, and schematically they are represented by single-loop diagrams.

As we have previously noted, the relationship (or coupling) between
controlled variables in multivariable systems may be attributed to the
peculiar properties of the controlled plant. In this case we say that the
controlled variables are interrelated through the controlled object (or
through its properties). An alternative way of saying it is that the
variables are plant-coupled. The relationship between the controlled
variables may be also artificially introduced by means of transducers
or control paths; finally, some interrelation may be imposed by the
technological or production process. In what follows, the term multi-
variable control systems (MCS) is understood in the quite general
sense of systems with interconnected variables, irrespective of the
particular mode of coupling. From the examples considered in Chapter One
we see that the number of controllers or regulators is not always equal
to the number of controlled variables. If the controlled variables are
regarded as the plant outputs and the controller coordinates as the inputs,
we may assume quite generally that the number of outputs is less than
or equal to the number of inputs. Study of simple multivariable control
systems with single-loop subsystems should provide a foundation for the
design of effective control systems, a problem of obvious practical
importance. In order to simplify the mathematical description of the
process, we shall first consider the properties of multivariable plants.

A multivariable plant may take on two fairly general alternative
configurations shown in Figures 2.1 and 2.2. For the sake of simplicity,
the transfer functions for two controlled variables only are shown. In
the sequel the particular results for the two-variable system will be
generalized without difficulty to any number of controlled variables.

We do not consider here the case when the output of the coupling element
Wi (p) is delivered neither to the input nor to the output of the element
with the transfer function W;(p), but to some intermediate point, since

it is easily reduced to one of the principal cases by a simple modification
of the function Wy (p).
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We now proceed to derive an equation for the first controlled variable
Yioe in cases depicted in Figures 2.1 and 2.2, For Figure 2.1 we have

Yiew O =Wu(D)[X1n(@— Wp(0)Y; o (P)]=
= Wy (p) X1 1o () — Wi (D) Wia (D) V5 o (). (2.1)

A similar equation can be written for the second channel, Let us now
consider the second case, that in Figure 2.2:

Yiew (@ =Wy(p) X1 (@) + Wi (p) Xoin- (2.2)

If the number of controlled variables is not two but n, the equation for
the i-th controlled variable in the first configuration is

YiewD=W,(p) X,(0) — W, (P)El Wi (DY 4 on (2) (2.3)
fork]

and the output of the second configuration is

Yo (P)=W,(p) X, (p)+kZI Wi (D) Xy 1 {P)- (2.4)
Py
The difference between the two alternatives is the following: in the

first configuration the i-th output is dependent on the i-th input and the
outputs of all the other controlled variables, whereas in the second

W, (p) W, (p!

g S _ lout lin yl out

&om Xzin ¥z put
FIGURE 2,1, A plant with cross FIGURE 2.2, A plant with direct
coupling, coupling,

configuration the i-th outputis a function of the i-th input and all the other
inputs. It is easily understood that the first case can be reduced to the
second by a certain modification of the transfer function Wi (p). As we
have not imposed any restrictions on the form of the coupling transfer
function, we will consider the first configuration only (a system with
cross coupling}, using the general symbol ax(p) for the coupling
coefficients. In the case of cross coupling, we cbviously have

o (P)= Wy (p); (2.5)
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and for direct coupling (Figure 2.2)

W,
0 (p) = W:; ((Z)) . (2.6)

The controlled variables are often interconnected simultaneously by
both direct coupling and cross coupling. This, however, does not alter
the structure of equation (2.4). It is only the function au(p)that changes.
This approach to plant equations is justified because in practice the
controlled object is fixed from the start and we are not free to change
its structure, As regards the control system, the aim of the designer
is to choose the optimum structure, and one does not generally start
. with equations of known form. In the sequel we therefore concentrate
on methods of selection of control-system structures.

§ 2.2. TRANSFER FUNCTIONS OF MULTIVARIABLE
CONTROL SYSTEMS WITH BASIC ELEMENTS

Consider a multivariable control system with n controlled variables
interrelated through the controlled object. A subsystem made of basic-
element components is provided for each of the controlled variables.

Verers ﬁ/(/,”/x Kra X @ylp) )\ 8, (5] Ty Y
>HF{>H{>Fd>H>Pr=
Zr,,-/rj Eac,,i/p/}’,

FIGURE 2.3, A general block diagram of a multivariable control
system with basic elements,

(a) We assume that the measuring elements (transducers) are also
interrelated (the case of load coupling will be considered under (b)).
Figure 2.3 is a block diagram of the subsystem for the k-th controlled
variable. The nomenclature pertaining to the k-th controlled variable:

K, = the plant gain;
D, (p)= the denominator of the plant transfer function, henceforth called
the self-operator;*
Y,= the controlled variable;
v, = the loop delay (lag);
Y,.= the reference value of the controlled variable;
o;, (p) = the coupling coefficient of the i-th and k-th variables, dependent
on the properties of the plant: a;(p) is either a constant (positive
or negative) or a function of the operator p; ‘

* [ this translation the adjectival prefix "se1f -" qualifies quantities and expressions pertaining to an isolated
single-variable subsystem which does not interact with the subsystems of other, "extraneo us" variables.]
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p, = the transducer gain; -
R, (p)= the transducer self-operator;
Y:= the controller output;
K, .= the amplifier gain;
6, = the controller gain;
Q. (p)= the controller self-operator;
ry; = a coupling coefficient between %£-th and i-th transducers;
fr = the load.

We now write the set of equations in Laplace transforms for the 4-th
controlled variable with zero initial conditions. * Making use of the
nomenclature in Figure 2.3, we write the plant equation

Dk (p)erkﬂyk(p)=[(h ['— g}ak,‘ (p)yi (P)'f‘y; (p)'}_fk(p):l » (2-7)
£k
the equation of the measuring device
Ry (p) Xy (D) =1, ,yreik (P) =Y, (p)+ 2} X, (17)} , (2.8)
iy
the amplifier equation
Xe(p)=Ke.Xs(p); (2.9)
and the controller equation
Qu(D)Y ik (p) = X1 (p). (2.10)

Eliminating Vi (p), X:(p) and X.(p)between (2.7), (2.8), (2.9), and (2.10),
we obtain

[D (P) Ry (0) Qp (P)™¥ + KWKy Beie] Y 1 (P) +

+ KRy (2) Qi (D) 1;—1 0 (D)Y 1 (0) = KKy B,1,Y ret(P)
itk

n
+ Kl Oty lZIrMXz (D + KR (9) Qr (D) 1 (D) (2.11)
ikk

The subscript k runs from 1 to n, and we obtain a complete set of
equations describing the behavior of the multivariable control system
under the given conditions.

Putting ry;= 0 in (2.11) (the measuring devices are uncoupled), we
obtain an equation for the class of MCS in which the controlled variables
are interrelated through the controlled object only:

(D4 (DY Ry () Qi (D) €%+ KoK 8p14 ] Yy (P) +

+ KR, (2) Qs (p) g‘akz (PYY 1 (P) = KK 84Y 1o (D) +
itk
+ KR (D) Qe (D) fe(p)  (R=1, ..., n). (2.12)

*  This means that initially the outputs of the various subsystems are zero, provided that they are described by
first-order equations; if they are described by second-order equations, the first derivatives are also zero, etc,
As regards the delay element, the output and its derivatives are assumed zero in the interval (=T, 0).
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As a particular example, the equation of a multidimensional servo-
system ¢an be derived from (2.11). A multidimensional servosystem is
a MCS in which the controlled variables are interconnected through the
measuring device only. Therefore putting in (2.11) axi= 0, we find

(D, (P)R, () Q (p) ™ + KK obeite] Ve (0) =
= KK 85t Y g rer(P) 1 KKy 1Oyt 1=21 ruX:(p)+
itk
+KR(P)Qu(P) (1) (R=1,..., n). (2.13)

- where

Xi=Yuu—VY,

(b) In the preceding we have considered the interdependence of the
controlled variables contributed by the properties of the controlled object
and by the coupling between the measuring devices (an artificially introduced
factor). In this case the load in the k-th control loop affects the controlled
variables in all the other loops via the £-th controlled variable. In some
cases, however, a change in the load in the k-th subsystem may directly
influence some other controlled variables. It is moreover significant
that the load (or the disturbance) is often introduced as an additional control
factor. In these so-called combined control systems the pro-
portional deviation control (the Watt-Polzunov principle) is combined with
load control (Poncelet principle). The equation of a combined control
system is obtained if equation (2.11) is modified to allow for load coupling.
In a particular case, a combined control system may degenerate into a
MCS with load coupling, provided that the load coupling is not employed
as a control factor.

Let Pui(p) be a coefficient describing the effect of the i{-th load on the
k-th controlled variable; Bi; (p) is a constant number or a function of the
operator p. We assume that disturbances from extraneous loads (i.e.,
those not associated directly with the k-th variable) are also fed to the
plant input. In this general case, we have

[Dk (P QL (PR, (p) eikp‘*'Kkm]Yk (p)+

FKiRe (P) Qe (P) 20w (D)1 () 4 K 2 ras (DY (7) =
itk ik

=Kkmrykref(p)+Kk:oti§1rki (2)Y et 1 (D) + KR (9) Q, (P) Py (p) +
[y
+ KR (p) Qe (p) izlﬁki (p) f: (D), (2.14)
ik
where

Kktol=KkKkaulz6k (k= 1, 2, .. . n).

If the disturbance from the self-loads is not delivered to the plant
input but to the input of some other element in the control system, the

function of p before the sum 2 By:(p) will change, while the equation as
a whole will retain its structure.
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The set of equations (2.14) applies to the most general case of multi-
variable control systems, provided that the individual variables are
controlled by single-loop systems. The equation of an ordinary combined
control system (with a single controlled variable) can be obtained from
(2.14) by putting am (p) =rm=0.

§ 2.3. EQUATIONS OF MULTIVARIABLE CONTROL
SYSTEMS IN MATRIX FORM

The equations describing MCS dynamics can be conveniently written
in matrix form, which is very compact and sometimes facilitates the
mathematical analysis of the system.

We use the following symbols: a;;(p) denotes the operatorial expressions
preceding the self-variables in equation (2.14), ax:(p) denotes the operatorial
expressions representing the influence of the i-th variable on the £-th

variable. Then
@ (DY=D (DR, () Qp (p) €"¥ + K\ K 0411,
@ (P) = KRy (1) Qu (D) 0y (P) 1+ Kuy3eK u 47 1o
g (2) =K R (0) Q1 (D)

We also put

KuKp ot = Kiion
KyRy (p) Qp(D)Bri (D) =b4: (P)y KproT 21 = Crt-

In this notation, equations (2.14) take the form

AY:(Kzo!+C)}’|-ef+DF+BF! (2~15)
where
| Y (p)
E ay(p) an(p) ... ain(p) J' Yzl(p)
i a5 (p) @ (p) ... G2 (p) ' . |
A= 5 en(p) ap(p) - e (p) |’ V= | Yi(p) |’
am (P) am(P) ... 2 (P) :
Yn(p)
guip) fi(p) 0 bia(p) ... bialp) (2.153.)
&2 (p) f2(P) | b5, (p) O v ban (D)
DE=i g 5w | b0 () b (P) e bin (P
| £ () £ (P) b (P b (p) .- O
il :p; “K“OKYI ref | 0 ¢ 13 ... Cup
2P oY 2re 0 e
T R R ol T LR i |
fn.(P) | Kn oY nref i€ €z Cnz -0 0
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Some particular cases of the general equation (2,15) are given in the
following:

(a) the equation of an ordinary multivariable control system (coupling
through the controlled object only)

AYy=K,Y., + DF; (2.16)

(b) the equation of a multidimensional servosystem (coupling through
the measuring elements only, i.e., ai(p)=Pri(p)=0)

ATnyzK:or),ref+C)/|-ef+DF’ (2-17)
where
ay Oy Cin
Ag) 0, S, (2.18)
C.nl. cnz - ‘;/1;1

(c) the equation of a control system with load coupling (o (p) =rui(p) =0)

AkY=KxotYref+DF+BFv (2-19)
where
a;, 0 0...0
Ap=| " 0 000
Y

is a diagonal matrix,
An interesting particular case is that of controlled variables with
identical control subsystems and symmetric coupling, i.e., a;; (p) =au (p) and

ain(p) =on:i(p). The matrix A is symmetric in this case, and the matrix A4,
may be written as

A,=a(p)E, (2.20)
where
a(py=a,(p)=0ay(p) ... =a,,(p)
and
10 0
E= 010 (2.21)
0... ... 1

is the identity matrix.

From (2.15), (2.16), (2.17), and (2.19) we obtain the respective matrix
equations for the different cases.
The general case:

Y = AT [KoY o+ DF + BF +CY,]. (2.22)
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The case of an ordinary multivariable system:
Y = A7 [KiY et + DF]. (2.23)
Multidimensional servosystem:
Y = A7 [Kier -+ CYres+ DF. (2.24)
Load-coupled control system:
Y = A [KiotY et DF + BF]. (2.25)

In order to obtain equations in Laplace transforms, the inverse matrices
A7, A;1, A7’ should be found in explicit form for each controlled variable.
We know from matrix theory that the inverse of a matrix is found in the
following way:

1. The given matrix is transposed, i.e., its rows and columns are
interchanged.

2. FEach element of the transpose is replaced with its minor.

3. Each element in the matrix from 2 is divided by the determinant
value of the system.

4, Each element of the matrix from 3 is assigned the sign (-1)*,
where i is the row number and j the column number of that element.

We now proceed to determine the inverse A-!, First we write the
transpose
a1 (p) an(p) au(p) ... am ()
a13(p) axn(p) @ (p) ... an(p)
Ay=| ) D) nlP) - s (D) (2.26)
ay(p) azu(n) a1 (P)
a5 (p) a3 (P) o e Oun(p)

and the determinant

an(p) a12(p) ... a14(p)

2y (p)  az(p) ... az(p)

............. . (2 .27)

a5 (D) any(P) +.. Gan(P)

The minors of the elements of the transpose (2.26) with appropriate
algebraic signs (the so-called cofactors) are denoted by 4;;(p); here A:;(p)
is the determinant of the transpose with the i-th row and the j-th column
crossed out, and its sign is (—1)#,

The inverse A-! is thus written in the form

Ay (p) — A (p) e (=11 A4, (p)

— Ap(p) Az (p) e (DM A (p)
A-—l [ N R R I R . (2 ,28)

D" A (p) D" An) ... Ans (D)

The matrices An' and A;' are obtained similarly.
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We now write in explicit form the expressions in brackets in (2.22),
In our nomenclature,

KiworY iret (P) -+ &1 (P) 1 (D)
KotYies -+ DF = KaworV 2 ref(P) 4 g2 () £2 (p) , (2_29)
Kn o n et P) + €an (P) fn (P)
b (P 1 () 012 (D) £2(P) 4 o A b1n (P) Fn ()
bo1 (P) £ (P)+ 022 (P) Fo (D)4« A+ b2 (p) fr (D) (2.30)

BF=|

! b1 (P) 1P+ b2 (D) 2 (D) + - F bun (D) fnip)
0415 (P) Yarer (P) 4 €13 (0) Vet (B)+ .. + €12 (D) YVirer(p)

Ve | 2D AT D Vo o A @ Faald) ] g 5

€t (D) Viret (P) F a2 (P) Yaoret(P) 4+ ... 4 €1, 1 (P) Yi_tref(p)+0
Substituting from (2.28), (2.29), (2.30), and (2.31) in (2.22), we find

A (p) — Ay () ... (=D 4, (p)

po | — A Ap (p) ... (=" Ay (p)
TR
D" A () Awa () - Ann (p)

KytotYives () F g1 (2) £1(P)

X I.<z z'ol?/z.ref'(P‘) + g22 (P)fz (17) 4

Koo nret (P) - &an () fr(P)

" b (Y FL(PY 012 (P) 2 () oo Fbua{p) Fa (D)
| &2 () £1(PY+ b2z (P) f2 (D) + «o. ~F b2 (D) fr (D) +

-+

b () £1(P)F bnz2 (P) 2 (PY -+ by () Fr (D)
O0+¢12(0) Yoret(P)+ +oo + €15 (P) Vires(P)
+ €21 (D) Yieet(P) -0+ ... + C2n (D) Virer (2) . (2.32)

i em (P Yieet (D) - G0, n (P) Vet (P)+0

Multiplying, we obtain for the matrix of the controlled variables

1=21 DAL P K o D)+ £, () £, (P)]
p LI OV A O K oY, (P42, () 7, )]
Y R
2 (=" 4, (DK, ol 1t (P) 1 8, () £, ()]
Z‘. [(—1)’“ A, () 2_.‘] b,y (B) £, (p)] 12_1 [ (=D 4y (p) kZ‘,_?c,k (P Ye ..f(p)]
+ g,l [(_1)'+f A,,(p)é}1 by () £, (p)] 4 '2[[(—0‘”«40(17)2_‘; i (p) Yk,,«p)] . (2.33)
e - )
N AR : R R
E[( AL B by )7, (,,)] i [(_l,m A 0) S e 2 ,,M(p)]
= =1
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The matrix equation (2.33) can be partitioned to n equations in a controlled
variables. These are obtained by equating the corresponding rows of the
matrices in the right- and the left-hand sides of (2.33). The equation of
any j-th controlled variable thus takes the form

Y= %: Y DAL D) K 1ret(P) 21 (D) 2 (9] +

i=1

E

+ [(—U’“AU (P) X0 (D) s (p)] +
k=1

i=1

n n
+Y [(—n" Ay (0) Y i (D) Y,m,m} ] (2.34)
i

Equation (2.34) is the most general expression for the j-th controlled
variable in a system where the variables are coupled through the plant,
the loads, and the measuring devices, but each variable is regulated by
a single-loop subsystem. Let us consider some particular cases of
this general equation.

(a) Ordinary multivariable control systems, where the coupling
between the controlled variables is conditioned by the plant only. The
equation of the j-th controlled variable in this case is easily obtained
from (2.34) putting by (p) =cw(p) =0:

Y o= 2z 51" Aoy (0) [Kino e P)+ € (P 1 (P (2.35)
i=1

Here A, and Ag; are obtained from A and 4 on substituting ri=0.

(b) Multidimensional servosystems. The equation for the j-th controlled
variable of one of the servos in a multidimensional servosystem is obtained
from (2.34) by putting &m(p) =0 and au(p)= 0:

Y a2 (D Ay (D) Ky 1ot (P) 14 (0) £, ()] 4
i=1

+ DY Ay () Y el bt | (2.36)
i=1 I’;:&lj
where
a5 €2 ... Cp ”
M| ', foroe ) (2.37)
P ny

and Am; are the cofactors of the corresponding elements in the determinant
(2.37)*.

(c¢) Ordinary combined control system. We have already stressed that
if the operators bu(p) are appropriately chosen, equation (2.34) can be
made to represent the j-th controlled variable in a multivariable combined-
control system. In an ordinary combined control system, load signals,

*  The subscript m;; indicates that the cofactor pertains to the element #j of the matrix of the multi-
dimensional servosystem.
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as well as the monitored deviation, are used as controlling factors. The
equation for a combined control system with a single controlled variable
is obtained without difficulty by putting i=1, 4;;=0, and cu= 0 in (2.34).

If now the system comprises several control loops which are load-coupled
in the sense that the loads of the different loops are employed to improve
the quality of each subsystem, the general equation is obtained from (2.34)
by the above-mentioned substitution:

Y s ()= 55 { Auss (P Ky 5a0) 235 (D)1, (D + Apye(9) D (01, (21 . (2.38)
k=1

where

Having considered the various equations of multivariable control systems,
we now proceed to discuss their operating conditions.

§2.4. STEADY-STATE OPERATION

We will derive a matrix equation for steady-state operation and establish
some general properties of multivariable control systems under steady-
state conditions. Remember that for the time being we are dealing with
multivariable systems with single-loop subsystems.

The steady-state equation can be obtained from (2.15) by putting p=0,

In explicit form, the equation for any j-th controlled variable under steady-
state conditions is written from (2.34) as

Y;0) = ﬁ{ 2D A O Ko 1@ 41 (O (O)] +

i=1

+3 [(—1)’%, © Y6, O f (0)] +
k=1

i=1

k=1
k£

n n
+3 [H)‘*’ Ay @Y, i <0)Yk,,f(0>] ] (2.39)
i=1
It is readily seen that delay elements, if present, do not influence the
steady-state operation of the system, since linr} ew =1,
h >

Let m out of the total n control loops be integral, while the remaining
n—m loops are proportional., A single-loop system is called integral if and
only if it contains at least one integrating (floating) controller /4, 5/. In
proportional systems, the controller contains no integrating (floating)
elements.
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Let the elements be enumerated in such a way that the first m subscripts
refer to integral subsystems. Then

“ma’kk(p):Kkmt k=1, 2,..., m,),
p>0

lima’kk(p)=1+Kxoz (k=m—+1,..., n),
>0

lima,, (p) =Ky 01 (=1, 2, ..., m),
p->0

imay, (p) =Ky Q)+ Kppalsy GR=m—+1, ..., n)
b0 (2.40)
im g, (p)=0 k=1, 2, ..., m),
p>0

lim g, (p) = K, (k=m+1, ..., n),
p>0

lim b, (p)=0 (k=1,..., m),
pro

lim b, (p) = KB (0) . (k=m—+1,..., n).
>0

We now proceed to determine the j-th controlled variable in two limiting
cases: all the subsystems are integral (case 1), or they are all proportional
(case 2). In case 1 we have m=n, and in case 2 m=0,

In case 1, the various elements in equation (2.39) are written in explicit

form
Ko Ktttz +o Kirorf1n

Kaorss Kzt e Katotfzn

.............. (2.41)
£+ (0)=0, b,,(0)=0,

@y (0) = Kpon a1

The transpose in this case is™

K tor Kaarrar «-+ Knsoefm

A 0)= Kioria Kawor o Kniorfm2 ||, (2.42)

Kitrin Kawtrar «oo Kpror

Inserting (2.41) in (2.39) and making use of (2.42), we find

1 n n
¥O=5 21" 4, <0>[Kmy, N V] (2.43)
&)
If the measuring elements are uncoupled, we have

K 0 0...0
At=A0= 0 K2lot 0...0

............

Klm! 0 0
0 ke o N
0 ... Kuim 0
cee ntot
Y, ,0= %" o 0 | Kialet Q) =Y ;:(0).
0 Ky Y '
o o Knwx
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We thus arrive at the following remarkable conclusion: if the subsystems
are all integral, the steady-state value of a given controlled variable is
indevendent of its own load and of the load of the other subsystems; it is
furthermore independent of the other controlled variables (although without
control, all the variables are plant- and load-coupled), depending only on
the artificially introduced coupling coefficients between the measuring
elements, which in a sense alter only the reference value. If the measuring
elements are uncoupled, the controlled variable is equal to its reference
value. This result can be alternatively stated as follows: if all the sub-
systems are integral, the controlled variables are independent in the
steady-state and the system is said to be statically noninteracting?,

If, however, the measuring devices are coupled, the steady-state value
of each controlled variable is dependent not only on its own reference value
but also on the reference values of all the other variables.

Let us now consider the case of proportional subsystems, assuming that
the controlled object does not contain integrating elements either. The
system determinant is written as

14+ Ko Klaxn(0)+Klwz"u - Kiay, O 4Ky in
A =] Kjoj (0) 4 Kjeorpn K0 (0) + Koty |, (2_44)
K1 0+ Koot ver 1+ Kpior

The transpose A;s under steady-state conditions is

14+ Ko K/ajl (0)+Kjt0lr]l oo Ko (0) + Koo m
A’s = | Kioi3 (0) -} Ky orriz 14 Kj o o Knanj(o)‘l“Knrot’n] . (2_45)

K015 (0) + Kitotr1a Kjajn(o)'{“Kjwr‘fjn vor 14Ky

Equation (2.39) is thus rewritten as

Y= 37 2 (=" 45O Ky 1 0+ 0 F O+
i=1

. n n
3
+ N0 O O+ Y e e O . (2.46)
k=1 kk;}
Each A;; is the determinant (2.44) with one row and one column crossed
out. The degree of the determinant in the numerator of (2.46) is thus
always one less than the degree of the determinant A,.

It is easily seen that as the controller gain K increases indefinitely,
we have

Iim Y15(0)=Yj“f(0)+ kzl rlkykref(o)‘ (2-47)
k)

K](o[ >

This increase in gain is of course permissible only if the system
retains its stability.

Thus, if the gain Kiw of each control loop is increased by increasing
the corresponding controller gain, each controlled variable in the limit

* The general case of noninteracting (autonomous) systems is treated in a special section of Chapter Six,




is equal to its reference value, appropriately modified by introduction

of artificial coupling between the measuring elements; it is thus independent
of the other controlled variables and loads. If the measuring elements are
uncoupled, we have

lim Y, Q=Y (0). (2.48)

Kj(m»oo

From (2.46) and the values of the elements entering equation (2.46)
we see that if the coefficients Kjw are finite, the individual controlled
variables are coupled, but the interdependence diminishes as the gain
factors of the individual controllers increase.

If all the plant and controller parameters are known, equation (2.46)
can be applied to determine the steady-state value of the controlled variable
and hence to establish the relationship between the controlled variable
and the load. .

As an example, we calculate the steady-state value of, say, the
second controlled variable in a three-variable system:

3
Vo @ =5 3 (=1 Ap0)] Kia¥ 10 (0)+
i=1

3 3
+£40) £,(0) +2bik 0.+ chkykrcf (O)I (2.49)
= 51
From (2.40) we have
g0 =K, bp=Kpin ). ¢ =Kio"ins

1+ Ko K105 (0) +Kyior12(0)  Ki0y3(0) A+ Ko 713 (0)
K0z (0) + Kjrorrz (0) 14Ky or K123 (0) + Kprorras (0) (2 .5 0)
Kty (0) + Karorran (0) Kiaaz (0) + Krarrs2(0) 14+ Ko

14+ Ko Ka03(0) -+ Karorr21 (0) Kty (0) +Kaeon 31 (0) H

A=

Kyay3 (0) + Kirorri2(0) 14-Kaeor K032 (0) +Kiseorrs2 (0)
K1043(0) - Kiiorr13(0)  Kaftog (0) +Karorr2a (0) 1+ Karor
Ao —— K012 (0) + Kyrorri2 (0)  Ka0az (0) + Kseorrsz (0)
27 K0y (0) +Kieor120) 14 Ko : (2.51)
_ 14 Ko Kaasy (0) + Koo' (0)
27| Kiois 0) +Kiaris (0 1+ Kseor ’
A = | K115 (0} + Kyt '12(0) 1+ Ksior
2 K013 0) + Kiiar13 (0)  Katigs (0) + Karorr22 (0) |

Inserting the appropriate numerical values, we obtain Y.
From (2.49) we see that, by introducing additional load coupling, we
may achieve any desired variation of the steady-state controlled variable
as a function of load. Note that the number of disturbances or loads need
not be equal to the number of controlled variables; furthermore, introduction
of a certain number of disturbing factors in addition to the already existing
disturbances in the system does not involve any fundamental difficulties.
Let us now consider the general case, when some of the subsystems
are integral and the others are proportional. In our example of a three-
variable system, we assume that Y, is under integral control. The coupling
between the measuring elements is ignored, since it is artificially intro-
duced into the system and only alters the reference value of the controlled
variable. '

A =

A
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We thus operate under the following conditions:

T (0)=0, ay(0)=0, gn(0)=0'} (2.52)
a2‘2(0)=K2lton bzz (O)=0-

Making use of (2.52), we write

Ky ot airef (0) ’ 1+ K Kioys ©)
Ksaal (0) 1+Ksrot __Y (O) (2 53)
I+ K 0 K05 (0) T el :
0 szr 0
Kao3 (0) 0 14 Kyior

YZ: (0)=

Thus, under steady-state conditions, the integral variables are load-
independent and do not interact with other controlled variables, despite
the plant-coupling. The only case when disturbances may alter the integral
controlled variable is if they are mixed with the reference value; however,
in steady-state conditions the additional signal causes an equivalent change
in the reference signal.

We now establish the interaction of integral variables with proportional
variables. Suppose that in our three-variable case, the second and third
variables are integral, while the first variable ig proportional, The
equation of the first controlled variable (again ignoring the transducer
coupling) according to (2.49) is

3 . 3
Y@ =5 % (1" 4,(0) { KioY 1t 0) +24(0) £,0) 4 3, 814 (0) £ (0) } (2.54)

i=1 k=1

Substituting for the elements in (2.54), we find

1 Ky 0
Y50 = 14+ K Koz (0) Ko, ©0) {’ 20 Kigor ,[Kluo:yltrcf‘,‘Klfl 0+
2ot 0
0 0 Kot
+ Ky Biifs (0)+ Birafz (0) - B1sfs (0) )] —
Kia, (0) 0 I Kioy3 (0)  Kipor
Kia © Ky | 4| 0208 S0 | K}

(2.55)

After simple manipulations, we obtain

Kif1 (0)

TFR e O+ Tt 83 O B ) +

+Bisfs O = g 010 ) Yarer - G15¥ ). (2.55a)

The physical meaning of the components in equation (2.55a) is obvious:
the first term in the right-hand side corresponds to proportional control
of the given variable, when considered separately, the second and third
terms represent the effect of the variable's own load and of the additional
load of this and other variables introduced through the transducer gu;
the last term describes the effect of the extraneous reference values on
the steady-state value of the controlled variable. From equation (2.55a)
it is also easily seen that the effect of the other controlled variables and
their loads in the steady-state conditions increases with the increase in
plant gain and decreases with the increase in the gain parameter of the
controller or the proportional control loop.
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In conclusion of this section, we consider the case when the transfer
functions of the plant and the controllers are identically equal for all the
variables. We shall try to establish the behavior of this system under
steady-state conditions. Since all the subsystems are identical, they
are all either proportional or integral. The case of integral subsystems
is of no significance for our analysis, since as we have shown in the
preceding for a more general case, the subsystems are independent under
steady-state conditions.

We thus consider the case of proportional subsystems, remembering
that subsystem transfer functions and the coupling coefficients determined
by the plant properties are respectively equal to one another. In this
case the matrix 4 is equal to its transpose A; and is symmetrical: ax(p) =
=oy;(p), whereiand kare subscripts pertaining to any controlled variable;
aii(p) =an(p), aij(p)= amn (p).

Let us consider the case of an ordinary multivariable control system,
ignoring load- and transducer-coupling.

The matrix A4 in this case is

a8 a .. a
a 8 @ ... a

Ad=Adt= a a o . (2-56)
a. .. .a. . .a'.a;m

The cofactors of all the diagonal elements in (2.56) are obviously equal,
i.e., Au=Aj, and they all have the sign plus. We can also prove the
following proposition:

The cofactors of all the other elements in the matrix (2.56) are also
equal to one another, but have the sign minus.

Indeed, since all the nondiagonal elements of the matrix (2,56) are
equal to one another and the diagonal elements are also equal to one another,
the cofactors of any two adjoining nondiagonal elements will coincide if
the corresponding pair of rows and columns is interchanged in one of the
cofactors. This operation, however, will reverse the sign of the cofactor,
but since the cofactors of two adjoining elements have different signs, it
is clear that in virtue of symmetry the cofactors are equal in magnitude and
in sign. This proves the first half of the proposition.

We will now show that all the cofactors reduced to identical form have
the sign minus. It suffices to show that at least one of the cofactors has
the sign minus. Consider the cofactor of an element adjoining a diagonal
element. Since the cofactor of a diagonal element always has the sign plus,
the cofactor of an adjoining nondiagonal element must inevitably have the
sign minus, which completes the proof.

Making use of the above conditions and the symmetry of the matrix,
we obtain from the general equation (2.34) the following expression of
the j-th controlled variable:

Y] = 7‘1: {A// (p) [K]toryjrd(p)+g]] (P)fj(ﬂ)] -
~ (=1 A1 [Kpp1im? j1ee(P) -+ 255 (D) £y (D)) (2.57)
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Since all the reference values are equal, equation (2.57) can be written as

I Aj(p)—(n—1) 4y, 141 (p) —
Aq
Ay —(r—1) A4}, 11 (D)
a5 (p) Ay (p) —(n—1) a5, 141 (P) 4}, j11 (P)°

y/=[KjxotYIre{+g}}(p)fj (P)

=IK]to!Yj|ef+gj](p)fj(p)] (2.58)

The analysis of the system is considerably simplified in this case.
Indeed, the stability of the entire system is determined by the position
of the roots of the denominator in (2.58)

a; (py Ay (D —(m—N)ay, ;1 (D) A (D) =0 ) (2.58a)

relative to the imaginary axis. It is easily seen that equation (2.58a) can
be reduced to the following form:*

la;; (P)—ay, j1 (P)]"-! la;+n—1)a;, ;. (p)]=0.

It thus suffices to investigate two equations of a much simpler form,
namely

ay,(p)—ay,;.1(p)=0

and
a;+n—1)a,; j+1(2)=0.

This approach to stability is very attractive, since the order of the
equations to be investigated is equal to the order of the subsystem. It
should however be kept in mind that the results should further be tested
for coarseness in the sense of A, A, Andronov. This test is particularly
important in our case, since the smallest deviation from homogeneity
will markedly increase the order of the equation to be investigated for
stability.

Under steady-state conditions, equation (2.58) takes the form

AjjO0)—(n—1) A;41(0)
yj:(O)': IK]lotY[mf(O) +gjj (O)f(O)] (1 +Kjtot) A” (0)_(,,__ 1) Kja(o) Aj»j+l (0) (2 .59)

§ 2.5. ERRORS IN MULTIVARIABLE CONTROL
SYSTEMS WITH BASIC ELEMENTS

We resume our discussion of multivariable control systems with sub-
systems made up of basic elements in single-loop configuration,

We introduce the concept of an error matrix in the general case of
a multivariable control system. The definition is analogous to that
proposed for multidimensional servosystems /80/. The elements of the
error matrix X are defined as X,=V,,—V,. Eliminating ¥; and ¥; between

*  This result is due to A, A, Krasovskii /23/.
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(2.7) and (2.10) and seeing that ¥,=V,,,—X,, we obtain the following
expressions for X;:

[D:(P) Qi (P R (P) €+ KiKi 3] X (P) +
+ KiulQi(p)éla,-k (P)—wDi(P) Q; (p)e'l”kéru (2) | Xz ()=
ki ' heki
= D1 (P) Qu(P) €Y (D) KiQu () Bt ()Y ()
+ K Q. (p) f1(p) k’;é=1’ 2y eny ).

Our aim is to write equation (2.60) in matrix form. We put

Dy (p) Qu(p) R, () € + KK, 0, = 2y (p),
w.0,(p) Q,(p) e =1L, (p),
K, Qi (p) =, (p)-

(2

(2

In this notation, equations (2.80) can be written in the matrix form

as follows:
AX =BY - CF,

where
an (p) (P (P)— oo n(p)op(p)—

—Li(p) ri2(p) —bi(p)ria(p)
¥z (p) 0z (P) ~ a2 {(p) eoe Ya(p)ags (p) —
= — L2 (p) ra () —La(P)ran(p) | °

.............................

Yn (P) 0 (P)— oo @ (D)
—Cn (D rm (P

Lidp) Vi (P) oz (pP) ... Va(P)oia(p)
B=|va(p)an(p) L:(r) oo Y2 (D) Oz (D)

Ya (2) @ (P) ¥n(P) Ona(p) -.. L3 (p)

v 0 . 0
c=|"° Ye(p) ... 0

0 0 ver Y (P)

X 1 yl ref (p)
XR Y, gref (P)
X = O YVt = . '
);’a Ya r;f ip)
f1(p)
f2(p)
fn(p)

From (2.62) we obtain the error matrix

X = A" {BY, .+ CF].
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The matrix A can be written as a product of two matrices

a;(p) 0 .ee 0 1 Rz ... Ry
A=|0 a (p) ... 0 X Ry 1 ... Ry ,
0 0 ayn (p) Ry vvv vos 1
where
R,=Mi (P 3 () — & () 112 (D)
‘ 12 a1 (p) ’
R, = Y1 (P) n(p) — & (2) 110 ()
1n ay (p) ’
R, = Y2(P) o (P)—L: (P} rar (p)
2 ag (p) !
R, =X (P) agn (P) —E2 (P) ron ()
2n a2 (P) !
R, == Ya(P) %1 (p) —Ln (p) i (p)
m 2nn (p) !
are likewise for the matrix B
1 Y1 (P) @12 (p) Y1 (P) 015 (P)
L@ T L(p L o
Yz (P) o, (p) Y2 (p) @24 (P) 0 w ...0
B=|""Ttm S A N R P
..................... 0 0 e
Yn(P) am (p) 1 e

& (p)

Making use of (2.59), we write the inverse A~'in the form

1

—_— 0
1 R ... Rin -1 a5 (p) .
A"‘l Rgl 1. R,n X 0 ;z—;;-(—p—) cee 0
Ru v oo N B IR I 1' .
0 " @an (P)
Substituting (2.70) and (2.71) in (2.68), we obtain
1
R ay (p) 0
1 12 . . R]’l = l
g=l.o o e XY Ty O
Ry oo woo L oo, 1. .
0 0 )
1 Y1 (P) %12 (p) .1 (p) %10 (P)
E(p) a (p)
Yz (P) 221 (P) 1 L X (P) 230 (P)
. X G BT 7))
¥ (P) @51 (P) 1
£ (p)
ercf
L 0 .t 0 Yrer I Ry ... Rip[™!
>< 0 Cz (p) e 0 >< . + Rzl 1 Rzn
0 0 voo Ln(p) Ra vvv e 1
nref
Y1 (p)
w0 O £
0 M__ 0 fl (P)
X a5 (p) "’ X :
¥ (P) )
0 o ... 2 () fa(P)

50

H.

(2.69)

(2.71)




Congider the first term in (2.72). It determines the dynamic properties
of a multivariable system without load and of systems where the transient
process is initiated by a disturbance at all the subsystem inputs or,
equivalently, by application of the reference values Y;.{p)tothe system inputs.

Consider an isolated, noninteracting system. Its transfer function can
be obtained by putting e (p) =ru(p)=0, and in our particular case f;(p)=0.
Thus

&, (p)
Xi(p)zmyirei(p)' (2.73)

We will now determine the system error. From the properties of Laplace
transformation we know that

: o £
fim x (5) = lim p 2y Vi (P). (2.74)
Let yi.i(f) be a step function, then
o Yier (O
Yirer= i‘;( ) .
Thus
; = u©®
‘ll)l'g)x(t) - a, (0) Yi ref (O)‘
Here ac:.((OO)) is the proportional or the zeroth error. If the system is integral

to a certain degree, errors of higher order can be obtained.

Let the respective errors of isolated, noninteracting systems be
K§s‘), Kr_gs’), N Kf,s"), where the subscript identifies the system and the
superscript is the order of the system error*.

We now return to the first term in (2.72) and postmultiply it by the
identity matrix

E=aa", (2.75)
where
1
ay (p) 0
_1 0
al= an(p) "’ S (2‘76)
1
0 0 . —
ann (D)

Making use of the peculiar property of the inverse of a diagonal matrix,
we write the first term from (2.72) in the form

. L= @@ |

ay (p)

Y (P) 015 (P) —En (D) 7 (D) 1
2nn (P) o

*  The order of the error is determined by the degree of integral action of the system.
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1 o ... 0. 1 Y1 (p) oz (p) Y1 (p) e1n (p)
a, (p) L (p) o Ln (P)
1 ¥z (P) 02 (p) I Y2 (P) 230 (P)
X 4 (p) X A7) A ) X
I WP
0 0o ... L
2 (D) & (p) !
i (p) 0
ai(p) 0 0 ne YL )
0 0 con gy (D) Yoot 0 0 ta(p)
" ana(p)
Under steady-state conditions, equation (2.77) can be written as
1
g o Ol 0 0
12 - 1n 0 1 0
fmx@ =l a2 (0) X
Rt Ro "B R -
0 0 0
1 Y1 (0) 045 (0) Y1(0) a4, (0)
270 R (1)} @ 0 0
)l 0 m@ e 0 g
IVn (2) ((16; (0) 1 0 0 swse 8pp (0)
1
(SV
Kl (()9 0 ercf(o)
Sa) .
o PSRN S I (2.78)
0 eee K,,(S") Yyt (0)
where
Ry, = Y1 (0) 915 (0) ~ £, (0) 12 (0)
12 a,,(0) '
R, =Y ©) a7 (0) —£i (0) r1s (O
1a a1 (0) !
R, = Yn1 (0) 0py (0) — 8, (0) rmy (0)
a app (0) :
The expression
1 0
N m 0 see 1 ¥1(0) ayy 0) Yit, (0)
1 Ryu .o Ry 1 0 EO T TLO
k=l il XY b S
Ru Rm 10 e e Y (0) 0y (0) 1
1 0
0 0 ... o ® ‘CI()
a,©® 0 .. 0 KS o o
X| O emOe 0 ] 0 Ko (2.79)
0 0 @ (0) 0 0 K,Ss”)
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is the generalized error matrix. In the case
QO=Kn, LO=p, &L=p, and a;=1+K

the generalized error matrix takes the form

1 - K@i —mri, |71 1 0
14K o 14Ky 7" ) |

Kl —pnrm 1 0 1
1+Kﬂf0( o " 1+K”[U!
1 Koy ... Koy, 14K o 0 ves 0

X K,an 1 e Kz(lz,, >< 0 1+K2m( oee 0 X

..........................

Koo Kty oo 1 0 0 eor 14+ Kn o
K® o o |
x| © K® ... 0| (2.80)
0 0 ..KO

It should be remembered that the coefficients ax and ryi enter the matrix
with their respective signs.

The generalized error matrix is thus a product of two matrices dependent
on the coupling coefficients as and ri and a third matrix — the error matrix
of the noninteracting subsystems.

Consider the following example. Determine the error matrix of two
systems coupled through the plant and the measuring devices and establish
the equivalent errors for each interacting subsystem.

We have
1 Kipyyp ~—~aris ! 1 0
Ky — 1+KllO[ 1+Kl!01 ><
’ Koyt — pgray 1 0 1
1+K2!0t 1+K2m(
1 Ko ] 1+Ki 0 KO o
X" llz"l + K 1 N (2.81)
Kooy 1 0 1+ Koo 0 Ké)

The inverse preceding the first factor in (2.81) can be found in explicit
form. The transpose in our case is

1 Kaltsa) — pors
K — 1 + K2 tat
T Kiptg —pure 1
1+Kltox

The determinant of the system is

1 Kipioia —rg
1+ Kt — 1__(K1M1012—H1f|z) (Kapomgs "'llzfal).
Kopottgy — parg; 1 4+ Kio) 1+ Karor)
14+ Koo

The inverse may therefore be written as

1 _If_llhalz — Wl
1— Ry I+ K [T—Ry2])
) 2.82
Kapagr — pora 1 ( )
I+ Ky {1 — Rl 1— Ry,
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where
Ry = (Kipiayz — pir1) (Kaliatty) — para))
= (1+Kl !O[) (1+K2(01) !

R,= (K — rig) (Kabolay — Uarar)
= (1+Knor) (1+K2mt) '

Roj= (K109 — pir12) (KolaGoy — Porar)
2 (14 Ky wod) (14 Ky o) !

Ryp= (Kipti01z — wyr12) (Kolto@as — pai7g1)
2 (14 Kitor) (1 + Kaeor) *

This inverse is now multiplied successively by the matrices on its right in
equation (2.81). Having performed the multiplication, we find

_ [ Kn K
K= Kay Kp "' (2.83)
where
0}
Ky= ! -+
n 1— (K@i — piris) (Koholtss — Waray)
(1 +K1 !0() (1 +K2mx)
' 14K, 0
K (Ko —wyryg) Koy Tﬁ
(K012 ~= Wir1) (Koftoltyy — porar) 1 °
tot 1—
Ko | TF R R 2]
1 K ot
KKy, —""‘—11 Ki or
Kn= 1 — SKutiip — Riryp) (Kol — orar) +
(4K o) (14 Kz o)
K Ky — i)
— SKiytgs — mar1z) (KoltaGor — orar) ]
T Kisa [1 TR T 2]
Ky — KD [Kypyay — Hyry] 4
a— 14K [1_ (Kip101g — Ii712) (Kalta®yy —“Hﬁ"zl)]
2ot (1+Kno()(l+K2mt)
+Kg)) 4 Ky 101 ,
1— (Kili01s — pifs2) (Koligla) — oryy)
4Ky o) (1 + Kztor)

KK, “l‘-iL‘;Ksz) (Kaparyy — parar)
= 1tot
? 1+ K o [1 K@iy — iar1p) (Kalto@a — p.,r,,)]

(1 +KI !Ot) (1 +K2m()
kP
+ 1— (K012 — Baris) — (Kallalo — pofay)
(T4 Ky o) (14 Kz o)

Matrix (2.83) is the error matrix of a two-variable system in explicit form.
In particular, if the subsystems are uncoupled, we have aja=ay =rp=ry=0
and (2.83) takes the form
kP o

Ko= 0 KO

. (2.84)
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From (2.83) and (2.84) we can estimate the effect of plant- and trans-
ducer-coupling on the equivalent errors in each subsystem.

Another interesting case is the error matrix for pure plant coupling
or pure transducer coupling {(and not mixed coupling, as in the preceding).
Putting in (2.83) rip=ry=0, we obtain the error matrix for a plant-coupled
two-variable system:

*K”mw 2.85
- ‘ Ky K|’ ( ‘ )
where
Ky= K +
n= 1— KKl 201
(1+Klt0|') (1+K1 (ot) ’ K
n KK Koityo150, TR j_- K; -
14K o [1 _ __KiKoipy0,,00 ] !
1 K (1+Kll0lv) (1 +K2tor)
. KOK g TH2 KOk o
B L KiRKaumegon T [1 L KiKanibeuy ] J
TF Kiod) (T Ko oo aizagfzm
0) 1 1ot
K . ‘K§°’K2u2a21 Ks K2a21 T +—Kz ot
a 14K, [1 — KKy 1 — KKl y01,00) '
2 tot (14K, zlo() (}(—'— Ko or) 1+ Kio) 14Kz 10)
K+ Ky Kophgtyg0y %1’(% K®
K= 14K [1 —_ Pa0y202: - 1— KKl 90,50,
2ot (l"l"Kl (ot)(1+K2tol) (1+Kl(ot=) (1 +K2ml)

In the case of transducer coupling, we put a;;=a, = 0 and obtain from (2.83)

(2.86)

k=] &

Kl! K!!

where

K
Ku = s '

Pilaryarsy

1- (1 +Kl (ox) (1 +K2(ot‘)
Kuyr
Biltolyoloy

1 Koo [ 1 — rgerer |
KPuyry,

WMol ala) '
1+Kﬂoz[1_m]

Ky =—

kP
Bilkalioray

I~ TR 1K)

Examination of expressions (2.83), (2.84), (2.85), and (2.86) suggests
a number of general conclusions for multivariable control systems.

The diagonal elements of the matrix correspond to the equivalent errors
of the subsystems, while all the other entries represent the effect of the
i-th error on the &-th error.

Kp=
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The expressions above indicate that the errors in multivariable systems
with coupling are essentially different from the errors in uncoupled systems.
For example, take the first-loop error. From (2.83) we have
MM, M¥N1K2‘112

. {0) 0
K“_MxMz(Kszlhau—'Hlfn)Na UK MM+ Ky o (MM, — NN, * (2.87)

where
M1= 1 +K1mu M2= 1 +K2mn
Ny= K\t — Wil

N, = Kalig0gy — Mafoy.

Without coupling Kn=K{". If plant coupling is stronger than transducer
coupling, i.e., if ax>ri, the equivalent error Ky is greater than K® In
particular, pure plant coupling increases the system error.

Conversely if the coupling coefficient ri can be so chosen that ri>Kion,
an appropriate choice of K., will make the error K, less than K{. In
particular, if no plant coupling is imposed, i.e., aa=0, appropriate
choice of the subsystem gains will substantially reduce the errors. This
situation obtains in multidimensional servosystems, which are transducer-
coupled without plant coupling. The recently developed so-called control-
coupled systems are also classified as multidimensional servosystems.

Consider a nondiagonal element of the matrix (2.86):

K(lo)l‘lfn

- —_mrern '
1+K“°‘[l (14 Kior) (1+K2‘°‘)]

(2.88)

If the controlled variables are independent, rix= 0 and all the elements
with ri; vanish, Furthermore, as we have shown in /39/, in single-variable
systems increase of each loop gain lowers the system errors and is thus
advantageous from this and some other points of view.* It is clear from
(2.86) that the nondiagonal elements of the matrix will approach zero as the
gain of each control loop is increased indefinitely.

* The effect of gain on the dynamic properties of the system is considered in Chapter Four.
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Chapter Three

STRUCTURE OF MULTIVARIABLE CONTROL SYSTEMS

§ 3.1. INTRODUCTORY REMARKS

In the previous chapter we considered multivariable control systems
with single-loop subsystems made up of basic unidirectional dynamic
elements, The philosophy behind this approach was explained in the
preceding. In our analysis of these systems we have established that
with regard to the steady-state error they do not differ from ordinary
single-loop systems, where an increase in gain improves the accuracy;
however, even in this simple case there are substantial differences
between multivariable and single-variable control systems. These
differences are best illustrated by considering the characteristic equation.

The general transfer function of a closed-loop single-variable system
without stabilization which is made up of basic dynamic elements in a
single-loop configuration is given by

n
Ky
Kp=—220 (3.1

K,
12

where a;(p) is the self-operator of an element. Depending on the exact
nature of the elements in the control loop, ai(p) is a polynomial of first,
second, or zeroth degree.

The characteristic equation of the system is written in the form

I a0+ K=o0, (3.27)

n
where K= [ K, is the overall system gain. Inmultivariable control systems,
=1

even those with single-loop subsystems, the characteristic equation is a
sum of polynomials. It is clear from Chapter Two that the characteristic
equation of a multivariable control system can be written as

Po(P)+f1(Ki)Pl(“11)P1(P)+f2(Kt)Pz(azz)Pz(P)'f" <o T+ a(K)pp (@) P (2)=0, (3.3")

where f; and p; are functions of the loop gain factors and functions of the
coupling coefficients between the individual controlled variables. P; are
functions of the self-operators of the individual subsystems.




The effects of gain and coupling on system dynamics should be considered
separately, but regardless of the outcome of this analysis it is clear that
single-loop configuration does not ensure satisfactory dynamic properties
in multivariable systems.

Now, what is the desired structure of multivariable control systems?

In other words, what should constitute the foundation for the synthesis

of multivariable control systems? In our analysis of single-variable
systems [/39/, an optimum system was defined as a system which, given

the necessary and sufficient number of simple dynamic elements, complied
with the specified technical requirements. For a very general class of high-
quality control system, the problem of synthesis is reduced to the
determination of structures which remain stable at arbitrarily large

gain factors and have an infinite closed-loop positive-response

bandwidth.

Let us now consider the case of multivariable control. The only general
approach to the problem of synthesis of multivariable control system is
found in /85/. The author distinguishes between three so-called canonic
structures, which differ in the mode of coupling between the individual
variables, and the synthesis is based on the following two factors:

(a) R=r—rg4, the number of free inputs, and

(b) D=rq4—n, the number of inputs which may optimize the process (in
respect to a certain criterion) minus the total number of outputs.

It is established /85/ that the above data are insufficient for optimum
synthesis and that some additional information is needed. This gap is
filled by certain constraints imposed on the system or by the assumption
that some of the network elements are known,

Our approach to the problem is essentially different. First, the one-
loop configuration is the only permissible, a priori known structure of the
starting subsystems; the dynamics of each subsystem is determined by
the dynamic properties of the measuring devices, the controlled object
(in relation to the particular controlled variable), the corresponding
controller, and the amplifiers. This choice of the initial structure is
suggested by the very nature of the control process, and these elements
always constitute the initial or the starting control loop.

Second, there is a possibility of natural coupling, due to the properties
of the controlled object or the load. This may be either direct or cross
coupling, Artificial dependence is introduced only if the measuring
devices are interconnected in a special way to produce a multidimensional
servosystem. As regards other types of artificial coupling between
controllers or special load disturbances introduced to ensure, say,
noninteraction and certain desirable dynamic properties, they cannot be
regarded as known from the start, since they are inherently the outcome of
synthesis and not the initial data for synthesis. :

The synthesis of multivariable systems, as that of single-variable
networks, is based on a number of requirements.,

1. Each component system, considered in isolation from the other
variables, should allow indefinite increase in gain without losing its stability.

2, The subsystems should theoretically have an infinite closed-loop
positive-response bandwidth.

3. Depending on the properties of the controlled object or the problem
being considered, we demand that the transient be close to the optimum
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for each controlled variable or that it meet a certain optimality criterion
for a generalized parameter representing the set of all controlled variables.

Thus, if we know how to build single-variable systems complying with
given requirements, the synthesis of multivariable systems reduces to the
determination of the dependence of coupling on system structure for the
case of subsystems consisting of more than one loop.

Our analysis will proceed as follows. . First we shall consider the
synthesis of systems where the individual controlled variables are plant-
coupled. Then the complexity of the problem will be increased by
consideration of load coupling, and finally of combined load and transducer
coupling. Multivariable combined-control systems with artificial load
coupling introduced to improve the dynamic response of the system are
considered separately,

In this chapter we consider systems with plant-coupled controlled
variables.

§ 3.2. THE EFFECT OF SUBSYSTEM GAIN ON
STABILITY OF MULTIVARIABLE CONTROL SYSTEMS

Let us consider the effect of subsystem gain factors on the stability
of a MCS consisting of single-loop subsystems.

In Chapter Two we derived an equation for the j-th controlled variable
under these conditions (equation (2.28)). It is written as

M:

Vo= g5 D" Ao (9) (Kol s o(0)+ £ (2 s (2] (2.29)

-
[}

1
The characteristic equation of a multivariable control system is

ay(p) anp(p) ... a;,(p)
@ (D) @y (P) ... Gy (p)
A — fr e s s e 4 s e . . — 0, (3 . 1)

@py (P) Ay (p) cre Qpp (p)

where
a; (P)=D,(P)R;(p) Q,(p) " + KK, .., ] (3.2)
@, (PY= KR, (p) Q: () @, (p).

We introduce a new symbol: ﬁT”(p)=DI (DR, (pyQ, (p)e™*, the self-operator
of a control loop made of basic elements. In the lagless case, this operator
will be denoted B(p). We also write

R (p) Qi (p)=",(p) KK a0 =K e

In this nomenclature, equation (3.1) takes the form

B O+ K| Ky, (D) op(p) ... Ky, (p) oy, (p)
A== | K2 (D) 0y () Begp (P)+Ky o -on Kivp (P) g, () | 0. (3.3)

K¥n (P oy () K¥a (D)0 () ... Brpn (O)+ K, o,
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{a) SYSTEM WITHOUT LAG

Expanding the determinant, we write equation (3.3) in the form

F;w,(p)+é1< Fra(e)+ 2 KK F g (D) - KKy - K+
+ e (2] F, (P)+f2[azk(P)]Fn (P +fn (o4 (P)] =0, (3.4)

where F, (p), Fy, Fy,; are polynomials in the variable p, with coefficients
independent of the subsystem gains, Fn(p), Faai(p), ... are polynomials
with coefficients independent of K;, and au(p) and f{am(p)] are functions of
the coupling coefficients.

We now show that under certain conditions increasing the gain of some
or all subsystems renders the multivariable control system unstable, and
that in multivariable systems with single-loop subsystems there is a
contradiction between the feasibility of infinite gain and the stability of
the system. We assume the following relationships between the loop
gains of the system:

K1=K;
ng'ﬂlK‘ (35)
annn—lK

Substituting (3.5) in (3.4), we find

n—1
Frno(p)+KFm(p)+ K Frz(p)+ ... +K" ,131 n+
+filow (P Fo D)+ o [ ()] Focr (P)+ ... +fn[azk (P)]=O' (3-6)

We divide (3.6) by K» and write 1/K=m. Equation (3.6) takes the form
» n~-1
m"F o (D)~ mo = F py (P) 4+ m"2F o (D) + .. +mFy 1 (P)+‘l;ll"]1=0: (3.7)

where

FNo(p)“':F;vo(p)"*"f][a;k(p)] F,,(p)+ e +f,,[a1k(p)]'

Increasing the gain is equivalent to decreasing m. Our problem thus
reduces to investigation of system stability as m—0.

Suppose that in the general case the characteristic equation can be
written in the form

mF o (p)+mFp (p) +-m"2Fpo (D)4 ... +mFpy, a1 (P)+ Fia (P)=0. (3-8)

Here the subscripts of F denote the degree of the polynomials. We now
proceed to determine the conditions under which the roots of equation (3.8)
are situated for m -~ 0 in the left-half plane (i.e., to the left of the imaginary
axis).

It is clear from our notation that the total number of roots in
equation (3.8) is Ny. Let m—0 in equation (3.8). Then N, out of the total N,
roots will approach the roots of the equation '

Frn(p) =0, (3.9)
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which we call the degenerate equation, by analogy with the theory
of single-variable control systems /39/. The other Ny— N, roots will tend
to infinity as m—0.
‘Suppose that the degenerate equation Fy.(p)=0 satisfies the stability .
criteria. Then the stability of the entire equation (3.8) will depend on
the disposition of the Ny — N, roots which recede to infinity as m—>0.
Let us consider the following cases.
Case 1,

N;=Ny—1, Ny=N,—2, ..., N,=N,—n. (3.10)
We divide equation (3.8) by m» and write it in expanded form:

1
Ao pNe+ay PV Ay pNi - @y N1 a2y pMe - L -
1
+ or [Gnp™ @y pNo-S - agpMei L4 L

e+ ,,:n [@aop™om - @ pVomr-t ... @, -] =0 (3.11)

The degenerate equation in this case is
BuopNe A @ PN e pNen=t L gy =0, (3.12)

It is implied that the coefficients of the degenerate equation satisfy
the stability criteria, since otherwise further analysis is meaningless.
Thus for m -0, No—n roots of equation (3.11) approach the Ny—n roots of
equation (3.12), which by definition lie in the left-half plane.

We now derive an equation which gives the location of the n roots
receding to infinity as m—~>0. Let

p:TZ-, (3.13)

Substituting (3.13) in (3.11) we find

qNo qNg—l an—l qN0_2
aoom—l—amw—i— - +a10 mNo +a11.__mN°_1 +
g2 g3
e A +azxw+
No—n No—n-1
g g
cee +anow+unlw+ e =0, (314)

Multiplying (3.14) by m™ and taking m -0, we find in the limit

Qooq™e+ 10Nt - @ygNi - L. aqten =0 (3.15)

or, eliminating ¢%-" roots,
809"+ 109" 1 g™t .. Fa,=0. (3.18)

We shall refer to equation (3.16) as the auxiliary equation of the first
kind. It comprises the leading coefficients of the polynomials in (3.11)
and determines the location of the n roots which receded to infinity as
m—0. The roots of this equation move to infinity in the left-half plane
if the coefficients of (3.16) comply with the stability criteria.
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To sum up, if condition (3.10) is satisfied, the multivariable control
system remains stable regardless of an indefinite increase in the sub-
system gains, provided that the degenerate equation and the auxiliary
equation of the first kind each comply with the stability criteria.

Case 2.

Ny=N,—2, N,=N,—4,..., N,=N,—2n. (3.17)

Equation (3.8) is now written in the form
@y pVeafo ' a,pNol ...
oo L [app®r g pMd g p L]
o+ (Aot @y oS )+
+#[anopN"_Z”-*‘amPN""?"—l + ... +an n-21] =0 (3.18)

The degenerate equation is

QPN =@ pMo- -1 L gy, N2 =0, (3.19)

The degenerate equation is again assumed to satisfy the stability
conditions. To establish the stability of the entire system, we have to
elucidate the location of the 2n roots which recede to infinity as m 0.

Substituting in (3.18) ’

o

, (3.20)

)
1
]

m
N
multiplying the equation by m? , and taking the limit as m-»0, we obtain
after division by ¢*-%

Q0™+ B10g™" T2+ Bopg™ A .. A =0. (3.21)

Putting x=¢?, we rewrite (3.21) in the form

Qoo™ - @iV - @pex® 2 ... -8, =0. (3.22)

In our investigation of stability of equation (3.21), we are concerned
only with the case when the roots of equation (3.22) are real and negative,
since all the other alternatives correspond to unstable systems. Now, if
the roots of (3.22) are real and negative, the roots of (3,21) are imaginary.
This is a limiting case in the Lyapunov theory, and whether (3.21) is stable
or unstable depends on the actual location of the roots of (3.21) when m is
small but not zero. Thus, in order to determine the location of the 2n roots
which recede to infinity as m >0, only the terms linear in m should be
retained in the auxiliary equation, dropping all the higher-order terms.

We now proceed to derive the auxiliary equation for m. Substituting
(3.20) in (3.18), we find

qN° qNo-l qN.,—-2 q/vu-z
Qg N +%1 No—1 +d02 N—2+ Ll +a10 No—=2 +
= phd i oT< A
m 2 m 2 m 2 m
qN,,-a qN°—4 qN,—-4 qM,-s
+ ay No—3 + (%) No—4 + M "l'a'QO No—4 +a21 N-5 +
-—-2——+1 -T-+1 —2—+2 —_2
m m m 2
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No=6 No—2n glo=2n=1

+422_7v°_e ~+ oo Fay 1/0—2,: +an e+ =0.
-5 +2 -5 +2 —— +2
m m m
Ny
Multiplying by m?, we obtain

1
Qg™+ m? agg™ !t + mapgh i L. a4
iy 1
+-m2ayghemd - mapght 4 L. - aygNt - mPay NS4
1
A MapgN =t 4 . gt - a,mT g2
-+ m,(z".",qlvo—ml-2 + .0 =0 (3 2 3)

1
Here m? is of the first order of smallness. Dropping the terms of higher
order in m, we find

1 1
g™+ m2ayg™=t 4 a1pgN-t - m2a, N34 aygNo-t 4

1 1
+m2angh i+ .. a, gt 4a,mIgh-2-1=0

or dividing by ¢gM-2-1, we finally obtain

1 1
Qg+ _l_m_aamqm; + amq2n—1 +m—"’—a11q2"‘2 4 apg? -3+
1 1
+m2ayg4- ... 4-mZa,=0. (3.24)

This is an auxiliary equation of second kind which, in distinction
from the auxiliary equation of the first kind discussed in the preceding,
is composed of the first two leading terms of the polynomials in equation (3.8),
1

every other coefficient being multiplied by m?,

The roots which recede to infinity as m-+0 are in the left-half plane if
the auxiliary equation of second kind complies with the stability criteria,
Let us check that the stability criteria are independent of m. Indeed,
the Hurwitz determinant for this case is "

1 1 1 1

m7a°, m?a“ m?am miam 0... 0
g0 a0 Gy ee. Gy O ... O
1 1
1 1 0. 3.25
0 m?ay mla, ... O 0... 0 > ( )
...................... _1_
0 0 0... m%a,

We see from (3.25) that m? is a common factor for all the elements in every
1

other row and it can be taken outside the determinant. Clearly, m? alters
the scale of (3.25) but not its sign. In writing the auxiliary equation we
1

may therefore omit the factor m? in all the coefficients of this equation.
We have thus proved the following proposition.
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If condition (3.17) is satisfied (mathematically this means that intro-
duction of the next higher order of m adds 2 to the degree of the equation),
the system is stable providéed that the degenerate equation obtained from
the general equation by putting m= 0 and the auxiliary equation of second
kind comply with the stability criteria.

Case 3. Here introduction of the next higher order of m raises
the degree of the equation by 3, i.e.,

N,=Ny—3, Ny=Ny—6, ..., N,=N,—3n. (3.26)

As in Case 2, we make the substitution

p=

e -I"

and write the auxiliary equation in the form

g% A~ Ag¥ =34 Apg® S ... Fa,=0. (3.27)
Putting y=¢3, we rewrite (3,27) in the form

Aol + @iyt gy - . =0 (3.28)

Equation (3.28) always has right-half-plane roots, and the system is
unstable. Indeed, the only case which requires verification is that of
(3.28) with real and negative roots, since otherwise the system is definitely
unstable.

Suppose that the coefficients of (3.28) satisfy the conditions of aperiodic
stability /39/. Then all its roots are real and negative. To find the roots
of (3.27), we make use of the relation

g=V7. (3.29)

By recalling the properties of binomial equations we conclude that at
least one of the three roots of (3.29) is in the right-half plane. Indeed,
the roots of an n-th order binomial equation are given by

" 2 2
g=VTyl (COS%”+/sm—fL—k—),

where k=1,2,...
In our case n=3 and the three roots are

‘11.2.3=|/! lyl (C°323Lk+1'51ﬂ*2§£) k=1, 2, 3)
or
‘hzl’alyl (-%4‘!—‘/21—),
7:=V1y] (—%—i@).
‘13=f/m'1‘
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One of these roots, Vy], is positive.

Since equation (3.28) has n roots, at least n of the 3 nroots of the
auxiliary equation (3.27) are in the right-half plane and the system is .
unstable. To sum up, if we can find two adjoining polynomials with degrees
differing by more than two (three or more) and the higher-order polynomial
is multiplied by m to the higher power, the system is unstable,

Case 4. In this case the difference in the degrees of the polynomials
is variable. ,

We have already established that if the difference in the degrees of any
two adjoining polynomials is three or more, the system is unstable. We
should therefore concentrate only on the case when the difference in the
degrees of adjoining polynomials is either one or two. The corresponding
equation can be written in the following form: o

M, (p) 4-mP= Py 1 (p) = mA=2Fp s m"=3F 5 _s(p)+
+m*4Fn 2 (P)+ ... + Fun(p) =0. (3.30)

We shall show that the polynomials must be arranged in the order of
increasing difference in degrees, since otherwise the system is unstable.
It of course suffices to show that violation of this rule in any particular
case results in system instability. Consider the simple equation

m2F n, (p) 4+ mF y,—2(p) + F,-3(p) = 0. (3.31)

Here the polynomial of degree N, is followed by a polynomial of degree

Ny -2 and then by a polynomial of degree N,~3, i.e., in this three-membered
equation the degree of the polynomials decreases first by 2 and then by 1,
We write (3.31) in expanded form:

1 v
QP+ ag pNel agph? L + o lapo i ay pNi4 4

1
+ srlanp 4 aypM-t 4 L] =0. (3.32)
Substituting in (3.32)
q
| p=-t, (3.33)
me
we find
™ g1 g2 g2 g3
aoo'@_‘f‘am —K£r+aoz _N_u——_2+ sty Iy +ay —E+
m? m 2 m 2 m? m
No=3 No—4 No=5
et +a20 qNo..H +a21 qNo +IZ22 q[vo_l + <o =0 (3-34)
m 2 me m 2
Not1 .
We multiply (3.34) by m 2 in order to elifninate the m in the denominator,

and write

1 3 1
M2 g™ - mag g4 m2apgh-2 - ... “+m?aqN-24
3 1

-+ mayghe-? +m_2412‘lN°_4+ R I AR ”ﬁamql\"’“ +
Fmaggh-5 4 ... =0. (3.35)
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Equation (3.35) has coefficients of various orders of smallness. Suppose

1
that we decide to retain terms with m?; dropping terms of higher order of
smallness, we find

1 1 1
M2 agq™ - m?agghe=? 4 agghe=? 4 m?ag g4 =0. (3.36)

The coefficients of equation (3.36) do not comply with the stability
criteria for two reasons. First, the coefficient of ¢%-! is zero and, second,
equation (3.36) may be written in the form

1
m? [@gq™ - agqVi=? 4y gVt - aygte-i= (3.37)
or

Ny—Ny+4-3=3, (3.38)

and according to the preceding rule, it has at least one right-half-plane
root for small m.

If terms to the order of m are retained in (3.35), condition (3.38) remains
in force and the system is unstable as before, We have thus proved a
highly important condition: the polynomials should be arranged
in such a sequence that the difference in their degrees
increases. :

Let us consider the derivation of the auxiliary equation when the above
condition is satisfied. It is clear that a difference of one in the degrees
of adjoining polynomials is permissible only between the first and the
second polynomials, and further down the series the difference must be
two. This follows directly from the rule that we have just proved, which
can be called the property.of declining degrees.

We start with the equation

m"En(p)+m*-1Fy,_1(p) +m*~*Fy,_s(p)+ ...
—|—mFNo_%(p)+FM_%H (p)=0. (3.39)

Writing (3.39) in expanded form and substituting the variables according
to (3.33), we find after simple manipulations

g g1 go-2
%~ 00 ~Fr T "w +
m? . m 2 m ?
g1 g2 s Mot
cor FhoSFaT ton St e Ty e T+
m ? m? m 2 m?
gho-s go-s gt gNo=T
+‘122"‘E+ oo tay Noi 1 +ay A +ag Ay +
m 2 m m? m ?
Nq—zi-l No—%-d
q q
. +aNo-n_1,0T +aNn-n—1,lT+
m 2 m2
Ne—g-=3
q
+ ANp-n-r,2 g ... =0. (3.40)
m 2
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No+1 1
Multiplying (3.40) by m ? and retaining terms of the order m?, we
obtain the auxiliary equation

1 1 1
m2agpg™e -+ @pg™t +m?ay g4 aypgNo i+ miay g+
1
2 ACat s SRR B VU Aol o (AT YIRSt ) (3.41)

1
The small quantity m? clearly does not influence the stability conditions,
since it multiplies all the odd terms of the equations. For this reason,

1
m? can be omitted from the coefficients in writing the auxiliary equation.
It is clear from (3.41) that the auxiliary equation comprises the coefficient
of the first term of the leading polynomial and the coefficients of the first
two leading terms of all the subsequent polynomials.
1
Dividing (3.41) by ¢™-#-2 and dropping the factor m?, we find
ang™t? +a1q" " - a1 g" + A" - ang" P+
. +a~°_%_ g +aN°_%_2=o. (3.42)
This is an auxiliary equation of third kind. As an example, we
write the auxiliary equation of the third kind for n=2. Thus

ang*+ a10q* + aug® - ang +ay =0. (3.43)

We have thus established under what conditions the subsystem gains
can be increased and what conditions are to be satisfied by the coefficients
of the general characteristic equation in order for the system not to lose
its stability.

We now return to equation (3.6), to determine the structure of the
subsystems and to summarize our analysis.

"~ In (3.6)

Fr=J1D,0)Q A R P (3.44)

This is a product of the products of the self-operators of the elements in
a single-loop subsystem:

Fm =1§K; /l] D, (p)Q; (P) Ry (p)+M(D), (3.45)

where M(p) is a polynomial of degree which is definitely less than the
degree of the first term in (3.45) by an amount equal to the degree of Di(p).
Similarly,

Fra(p) = 2KK, I:Il Dy (p) Qu () Ru(P)+ M, (P) , (3.46)

n=iJj

i.e., each successive polynomial contains one product D(p)Q(p)R(p) less
than its predecessor. Hence it follows that in our case D(p)Q(p)R(p) is at
most of second degree.

Our analysis of the simple basic structure leads to the following

conclusions.
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1. If the self-operator of each loop with basic elements is of degree 1,
all the gains can be increased simultaneously without loss of stability.
The degenerate equation and the auxiliary equation of the first kind should
each satisfy the stability conditions.

2. I the self-operator of each loop with basic elements is of degree 2,
all the gains can be increased simultaneously without loss of stability.
The degenerate equation and the auxiliary equation of the second kind
should each satisfy the stability conditions.

3. If the self-operator of each loop with basic elements is of degree 3
or higher, an increase of one, several, or all loop gains invariably leads
to loss of stability. There is consequently a contradiction between the
feasibility of gain increase and the stability of the system, similar to that
observed in single-loop systems with a self-operator of degree higher
than two. ‘

4. If the self-operators of the different loops in a multivariable system
are of different degrees, the gain of none of the loops with self-operators
of degree higher than 2 can be increased without losing the stability of
the system as a whole.

5. The structure of the multivariable control system should satisfy
the rule of declining degrees. A system with first o terms showing a
difference of 1 in their degrees and the next n—v terms a difference of 2
obviously meets this criterion.

(b) SYSTEM WITH LAG

We now return to the starting set of equations. We shall try to establish
the configuration of a multivariable control system whose subsystems are
made up of basic elements plus lags. The set of equations in this case is
written in the following form:

B (A +K,) Y, K, gl V(D)o (DY (P)=
kel
=Klml.yi ref(p) (i= 17 21 ey ﬂ). (3.47)

The characteristic equation can be written in the form

Bu(p) e" P+ K Kivi (p) 12 (9) oo K (p) oy, (p)
A= |Ka¥2 () @21 (p) Bo2 (P) 6" Kyt .. Ka¥a(P) 0gn(p) =0. (3.48)
Kiva(Dom (®  Kva @0 (®) v Bon(p) €™ +Kp o

We have already seen (Chapter Two) that the steady-state error in the
i-th controlled variable decreases with the increase in the i-th loop gain
in lagged systems, too. It is easily shown that the results of the previous
subsection can be completely extended to multivariable control systems
where some or all subsystems contain lags. We omit the proof*, since
it in fact amounts to repetition of the previous manipulations. We shall
only concentrat: on the new properties which are attributed to the intro-
duction of lags.

*  The validity of this proposition follows from the synthesis of lagged systems remaining stable at infinite
gain, which is described in the sequel. '
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We now prove the following proposition: if there exists at least
one pair of coupling coefficients ax(p) and ax(p) such that
o (p)ani(p)is of higher order in p than Dy(p)Di(p) is, and time
lag is provided in the i-th or the k-th loop, the system
is structurally unstable.

Indeed, for the system to become structurally unstable in this case,
it suffices to omit the leading term from the characteristic equation.

As we easily see from (3.48) and the procedure for the construction
of the characteristic equation for the entire multivariable control system,

n
the maximum value of v is equal to the sum of all the lags v= 3} 7, and
n i=1

X n
a term ep‘=111 will precede the product I[ﬁ,-, (p). Since the quasipolynomials
=1

entering the characteristic equation include the quasipolynomial

i=1 QI..I.,K—lpi“ (o (p) a“(‘p)k-iy... nﬂ“‘ 2
the characteristic equation will lose its leading term if ax{(p)or:(p)is of higher
degree than Bu(p)Ba(p) is, and the system will become structurally unstable.

§ 3.3. STRUCTURE OF LAGLESS MULTIVARIABLE
CONTROL SYSTEMS WITH INFINITE-GAIN STABILITY

Under real conditions, the self-operators of the subsystems may be of
higher than second degree. It follows from § 3.1 that in this case an
increase in one or several gain parameters of loops with self-operators
of degree higher than 2 will inevitably lead to loss of stability. We thus
have the following problem: synthesize a multivariable control system
which would be inherently free from the contradiction between stability
and precision.

Let the self-operator of the subsystem for one of the controlled variables,
say Y, be of degree V;>2. An increase in gain of this loop inevitably leads
to instability of the entire system. This conclusion follows from the
preceding results, but it can also be verified directly. Additional proof
of this fact will be quite useful in the sequel, and we therefore reproduce
it here in detail.

Developing the determinant (3.3) with respect to the first column, we find

[B1 (P)F Ky o A 4 KRz (P) Qa1 (P) gy (£) A+ -+ -
[ +Kan(P) Qn (p)u'nl (p)Anl=0' (3-49)

where A; are the cofactors of the corresponding elements in the first
column. The first term in (3.49) contains p to the highest order, since

it carries the fewest mutual-coupling coefficients, which are either
constants or operators of degree less than the degree of the self-operators
of the individual loops. Egquation (3.49) can thus be written in the form

FNZ(p)_'—K]m(FNl(p):Ov (3.50)
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where the subscripts F designate the degree of the polynomials Fy,(p) and
Fui(p). Obviously, N,= Ni+ V,. Hence it follows that if V,>2, the increase
in K« will immediately result in system instability. It is also obvious
that the condition N, — Ny <2 is satisfied if the (N; —2)-th derivative is
introduced into the first loop. Indeed, if the (V; — 2)-th derivative is
introduced into the first loop, equation (3.50) takes the form

Fr2 (p) + Kio (pV1724-1) Fan (p) =0. (3.51)

Here N;— N;<2. Generalizing this result to the case when the self-
operators of each control loop are of degree V,, we come to the conclusion
that stability can be ensured for any K; .. if the (V;—2)-th derivative is
introduced into each loop with V;>2, This ensures the condition N,— N; <2
in the i-th loop.

Now, is it necessary to introduce, besides the (V;—2)-the derivative,
all the lower-order derivatives as well, down to the first derivative ?

Before answering this question, let us derive an expression for the
degenerate equation, assuming that the (V;— 2)-th derivative has been
introduced into each loop with V;>2. It is easily seen that the degenerate
equation has the form

(" 4+ D"+ 1) ... (0774 1) Fa () =0 (3.52)

Regardless of the form of the polynomial Fy.(p), the system is obviously
unstable if any V,>3. Hence it follows that stability of the degenerate
equation can be ensured if for V,>3 all the lower-order derivatives, down
to the first derivative, are introduced together with the (V; — 2)-th derivative.

We thus come to the following conclusion. A system with a plant-coupled
controlled variables can be stabilized with respect to each controlled
variable for any gain value. To this end all the derivatives from (Vi —2)-th
down to the first inclusive should be introduced into the corresponding loop
(Vi is the order of the self-operator of the i-th loop).

§ 3.4. ALTERNATIVE SOLUTION

In the preceding section we dealt with the synthesis of structures that
retained their stability at infinite gain. This necessitated the introduction
of ideal derivatives of various orders into the system. We shall see

from what follows (and incidentally this

Ayaeq Kis: K; is also known from the literature /39/)
i deq Mo P i 10/ that in principle real derivatives of any
E’_I S S S ]__,__5 order can be made arbitrarily close to
- the ideal. This approach, however, can
)P 4 be recommended in practice only if no
ﬁ:i’ other more .conven%ent alternati.ve is open
o ) to us. In this section we descr.‘lbe a
Foni (57 synthesis procedure which achieves the
same effect (i.e., indefinite increase of
FIGURE 3.1, The I-th subsystem with a gain without loss of stability) but does not
stabilizer. resort to ideal derivatives.
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It is clear from the outset that the single-loop configuration is no longer
adequate for the subsystems. Figure 3.1 is a block diagram of the i-th
subsystem in a multivariable control system. We introduce the following
nomenclature for the i-th subsystem:

Mi(p)Di(p)= the self-operator of the subsystem, ignoring the stabilizer;
————I;’r':l((’z) = the operator of the additional element introduced as internal
feedback in the subsystem (we call this additional path the stabilizer);

Fai(p)and Fm:(p)= polynomials in the operator p;

K. = the gain of the stabilized section, i.e., the part of the forward
path embraced by the stabilizer;

K,deg the gain of the unstabilized section outside the stabilizer loop,

Ki=the plant gain for the i-th controlled variable;

M; . (p)= the self-operator of the stabilized part of the controller;

M, (p)= the self-operator of the unstabilized section.

Clearly Kio=K: « KiKi sq -

Now, suppose that the plant has n controlled variables and there are
correspondingly n control networks. As before, we assume that the
controlled variables are interconnected through the plant, the coupling
coefficients being ax(p). The constraints on anx(p) are the same as in
the preceding. Automatic control can be described by the following set
of differential equations:

{DUPIM, 40 ()M, . (P)F mi(P)H-K; oo Fut(P) 4Ky F i (D)) (D)=
= Ki1otFmi (P) Yicr (P)-Kil lMI st ([J)sz (P)—|—Kt w Fat (P)] X

X M geq (p)[gla:k(P)Yk(P)+fk(P)] (=12, ..., n). (3.53)
f oy

For the sake of convenience we put

L (p) =D (P) M; 4y (D) M; o (D) Fpi (D),
B (p) =D, (p) M, oy (P)Fri(p)+K; aeg Fmi (D) (3.54)
Di(p)=KiM: . (P)Fpmi (D).

. The degree of the operator IL(p) is the degree of the i-th self-operator
plus the degree of the denominator of the stabilizer operator. The degree
of the operator Bi(p) is the degree of the self-operator of the unstabilized
controller plus the degree of the plant operator and the degree of the
numerator of the stabilizer operator. The degree of Di(p) is the degree of

“the self-operator of the stabilized controller plus the degree of the
denominator of the stabilizer operator.
In our new nomenclature, the equations can be written in the form

IL(P+K, . B/} Y, (p)+

+ [Di(p) +Ki « KiFut (D)) Mi cey (p) [élalk DY, (P)—'fk] =
Rkl
=Kltotle(p)ercf(p) (i=1’ 29 ceey n). (3055)
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The characteristic determinant of (3.55) is

Ay Ap ... Aun |, . (3.586)

where

Ay=1,(p)+K; . Bi(p)
and

A =[Di(p)+Ki o KiF oy (D)) Mise (P)ir(p).

Expanding (3.56), we obtain the characteristic equation
Fro(p) +Ka Frni(p)+K% Faa (D) ... + K% Fua(p)=0, . (3.57)

where Fyo(p) includes the product of all IL(p) and all other products in which
K, does not enter as a factor. The polynomial Fyo(p) clearly contains p to
the highest order, and it determines the degree of the characteristic
equation,

The polynomial Fy:(p) is a sum of the products of B;(p)and [II, (p)
k=1
RE .
Fny(p) also includes all other terms which depend on the coupling coefficients
a(p) and appear as a factor before K, to the power of 1.
All the successive terms in (3.57) are formed according to the same rule; ’
the higher the subscript N, the fewer II;(p) appear in the product. The last

. n
term in (3.57), having K»as its coefticient, consists of the product [] B,(p)
i=1

plus terms dependent on o (p) which appear as a factor before K% .

Suppose that each control loop with its stabilizer form an isolated
network which retains its stability as the gain is increased indefinitely.
Then, as it follows from the construction of the polynomials in (3.57), the
difference in the degrees of two adjoining polynomials cannotbe greater than 2,

We thus arrive at the following procedure for the synthesis of multi-
variable control systems with infinite-gain stability: the gain of each sub-
system in a system with n mutually coupled (through the plant) controlled
variables can be increased indefinitely without causing instability of any
of the subsystems or the system as a whole if and only if

(a) each subsystem, treated in isolation from other controlled variables,
remains stable at arbitrarily high gains, and

(b) the degenerate equation and the auxiliary equations of the first,
second, and third kind of the entire multivariable system each comply with
the stability criteria.

§ 3.5. LAGGED MULTIVARIABLE SYSTEMS WITH
INFINITE-GAIN STABILITY

Let us now try to extend the results of previous sections concerning

the synthesis of multivariable control systems with infinite-gain stability
to multivariable systems with time lags.
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s Hisi K Figure 3.2 is a block diagram of

Voo 2 Glpl w ¥ a lagged multivariable system with
> > time lag. Part of the system is
n stabilized by a feedback element
 <F“-Za,5m . S Fu(p)
Falr) I with a transfer function INOR It
Fmilp] is assumed that the stabilized section
is lagless. We will now establish
FIGURE 3.2, The i-th subsystem with a stabi- the properties of the stabilizer and
lizer and a lag element. the stabilized section which permit

indefinitely increasing the local gain
and hence of the total system gain.
A structure shown in Figure 3.2
is described by the following set of differential equations:

[Pl (2ye "+ K, . S; (p)e"+ Ky oiF (P)] Yip)+
+ K [R(p)+ K, « Ni(p) Fy (p)] Zazk(P)Yk(P)—‘

=K/ [R (p)+K; « N;(p) Fnl (P)] [Yt er (D)t 1 (P)] (3.58)
(=12 ..., n),

where

Py(p) =D (p)N,(p) Fri (p) Q, (D)
S,(p) =D, (p)N,(P) Fi (p), (3.59)
Ri(p) =N (p) Fri () Qi (p),

N;(p)=the self-operator of the unstabilized section of the i-th subsystem;
Qi{p)= the self-operator of the stabilized section of the i-th subsystem;
K;=the gain of the unstabilized section of the i-th subsystem;

K; . = the gain of the elements in the stabilizer loop;

Klmr=Kl st Ki deg *

The characteristic equation is

Ay Ay ..o Ay
Ay Agg ... Agy =0. (3.60)

The expressions for A;;{(i=1,2,...; j=1, 2,...) have the form

AH = Pl (p) et‘p+Ki st Sl (p) e't,p + KltorFlm ([7)’
A=K [R(p)+ K, « N(p)Fyy » o (p).

In the following we assume that the gainsg of the stabilized elements in the
various subsystems are either equal to one another or are related by

Ki st =an1 st =an st ¢
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The characteristic equation is thus written in the form

a

n b3 we
O S CiPuprer ~ +

n
n Dy
firmen” 1k,

n

S
+ Dw(p)et=?" + ... + Do, (p) [+

n

a ) Sp ﬁr,p
MZEISI(P)Sk(P)Cﬁ'Pt(ﬂ)e’=‘ +Dp(p)et=? 4 ...

n
3 e

+ "'+K’ls! [gsl(p)el=l +

+ K

e +Dl,, (p)

n
DR

+Dy(p)ei= 4+ ...+ D, (p)

+F(p)=0, (3.61)

where F(p) is a polynomial independent of K. and t. The polynomials Du(p)
are obviously of lower order in p than the polynomials in the first term
in braces. Dividing (3.61) through by K% we put

-
Klﬂ )

Equation (3.61) is thus written in the form

n

n 2 1p
HPpe=r" +Fp

n

n P
+m B8P C P e 4

m"

n
£

+Dy(p)e'=* + ... Dy, (p) |+

n

S e
+m"‘2 l,,2=1$[(p)sk(p)CZ_QPt(p)e’ﬂ n

érip n ﬁw
+Dy(p)et=t + ... 4Dy (D) + ... +II;[IS'(p)e[=l +
+Dw(p)e'=* + ... + D, (p)=0. (3.62)

The degenerate equation is obtained by taking m=0 in (3.62):

n

a f‘. o 2 e
IIS:(pe='" +Du(pe=*" + ... +D,,(p) =0. (3.63)

Suppose that the degenerate equation (3.63) can be made to satisfy the
stability conditions by appropriate choice of the stabilizer parameters
Fni(p) and Fui(p) (otherwise, further analysis is meaningless), The stability
of the entire system is dependent on the location of the roots which recede
to infinity as m—0,

First we should establish the presence of the leading term in equation (3.62),
According to the theorem of structural stability proved in the previous
section, we know that equation (3.62) has a leading term if for each pair
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of coupling coefficients the polynomial aw(p)ar:(p) is of lower degree than
the polynomial D;(p)D.(p) is. In what follows we assume that this condition
is satisfied.
Let us find the number and the nature I<’)f the roots which go to infinity
> e

i=1

asm-—0. Dividing equation (3.82) by m" , we find

n —%Tip n
H Pip+Fipe = +H§Si(mcz*ﬂ-(m+

+ Dwip)e” ™ 4+ ... + Dy, (p)e =1 }+

:_ S:(p) Sk (p) Ci 2 P p)+

1

2,

i

- ﬁfip
+Du(p)e™™ + ...+ Di(pe I L

. .
. +W‘_[I=Il S;(P)+Du(p) € + ... +D,, (pe =} ' ] =0 (3.64)

Equation (3.64) can be expanded in the form

n
-2y

Agp Ay phe-tt oo - (BopPe + By pfet 4 ... )e =1 4

+ ',:T [AloPN"l'AuPNI_I‘f' e +(BloPﬂ'°+BnPB'°_l+ e L)+
F s [Anp M- Ay pMm i 4 (B pPad- By =1 et
oo b LA A
vor (B BupPeT L Ye W L] =0, (3.65)

where No, Ny, ... are the degrees of the polynomials associated with the
corresponding powers of m in (3.65). Let

Ny—N,=1, Ny—N,=2, ..., No~N,=n. (3.66)
In other words, the degree of each successive sum of polynomials is one

less than that of the preceding sum.
We make the substitution

p=—ZT. (3.67)

«Inserting (3.66) in {3.65), multiplying by m¥ and putting m= 0, we
obtain after some manipulations

Apg" 4+ Awg" 4 ... +Alp=0. (3.68)

There are n roots which go to infinity for m -0, and their location on the
root plane is determined by the coefficients in (3.68).
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All the roots of equation (3.68) recede to infinity in the left-half plane
if and only if the coefficients of this equation satisfy the Routh —Hurwitz
criteria,

We thus come to the conclusion that a system with constraint (3.68)
is stable if the degenerate transcendental equation and equation (3.68),
which by analogy with the preceding is called an auxiliary equation of the
first kind, both satisfy the stability conditions. Our problem is thus to
choose the stabilizer transfer function and its location in the system ensuring

Ny—N,=1.
Let us now consider the case
Ny—N{=2, Ny—N,=4, ..., Ny—N,=2n. (3.69)

Substituting
== (3.70)

and acting as in the preceding, we obtain an auxiliary equation of second kind:

Aggg™ + Apigho=t 4 L. - Apge-? +Apgh-i 4 L
cor T Ayghi - A gPemte-t 4 (3.71)

We have obtained a similar equation before,in our analysis of lagless
multivariable systems. It comprises the first two leading coefficients
of each polynomial in (3.65). -

The system is stable for m-»0 if and only if

(a) the degenerate transcendental equation satisfies the stability
conditions,

(b) the auxiliary equation of second kind also satisfies the stability
conditions.

Dividing (3.71) through by ¢™-27, we write the auxiliary equation of
second kind in the form

Apg®™ + Apg®™ 1 Agg® 2+ ... +Apg+ A, =0. (3 .72)

Finally, if
Noy—N; >3, Ny—N,>6, ..., (3.73)

the system is unstable for m—0. The validity of this proposition follows
from the property of roots of binomial algebraic equations and is proved
in the same way as before.

We thus come to the conclusion that multivariable control systems
with time lag which remain stable under unlimited increase of the sub-
system gains are realizable. The necessary conditions for this synthesis
are specified in the preceding.

Let us elucidate the relationship between the above conditions and the
structure of the control system. In other words, we determine the
parameters Ny, Ny, ..., N,.
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Examining the structure of the polynomials in (3.65) and making use of
the nomenclature (3.59), we see that the differences No— Ny, Ni— N, ...
..., Nn—y— N, are given by the relation

Ny—N,=m+Q,—n, (3.74)

where m; is the degree of the operator p in the denominator of the stabilizer

transfer function; Q; is the degree of the operator p in the denominators

of the transfer functions of the elements in the stabilizer section; n; is the

degree of the operator p in the numerator of the stabilizer transfer function.
By assumption

|

N,—N,_,<2,

whence
m;—n+Q; <2

The degree of the equation describing the stabilized section of systems
with infinite-gain stability is thus given by the inequality

Q <ny ~m—+2. , (3.75)

An analogous relationship has been derived for single-variable systems
and for systems without lag. We thus see that a multivariable control
system with time lag remains stable under indefinite increase of gain
if and only if each subsystem whose gain is arbitrarily increased belongs
to the class of structures with infinite-gain stability.

§ 3.8. MULTIVARIABLE CONTROL SYSTEMS WITH
COUPLING THROUGH THE MEASURING DEVICE

X X X, Let us consider a particular, but
di st
4,0 . T (0 ' (P

highly significant, class of multivariable
systems where the controlled variables
are interconnected by the measuring
device, Transducer-coupled systems
of this kind are generally called multi-
dimensional servosystems. The
case of systems consisting of single-loop
FIGURE 3.3. Block diagram of the i-th servos was considered in Chapter Two.
loop of a control-coupled system. We now extend the results of the previous
sections of Chapter Three to the case of

a multidimensional servosystem block-diagramed in Figure 3. 3.

Making use of the nomenclature in Figure 3.3, we write the set of
equations describing the dynamics of a multidimensional servosystem
in Laplace transforms:

Qup) Vi =Kat| Wier )~ Y1 D]+ B (p) Frs ()~ Va(p)),
a (3.76)
Q. DY) =Ki « [Yi(p)—F2EYI ()],
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Dt(p)yi(P)'——:KioY:(P)"‘fz (3.

-3
-3

or, eliminating ¥,;(p) and Yi{(p), we have

{Qu(PQ . 1 (P)Fmi(P) D (P)+ K, « Qui(P)Fry(p) Dy (p)+

+K; « KyKF o (PD)}Y, D)+ K, KyiKioFmy (p)k§1 r (DY, (p)=
: Ik

=K, , Kathome(P)lgl"1k(P)ercr(P)+Klo[de(P)Q a (PP mi(P)+
Py’
+Ki Dy (D) (D) fi(P)  (R=1,2, ..., n). (3.78)

The characteristic equation generated by the set (3.78) is

Bt (PY+ Ky o Ve () + KiwotFmi (p) 112 [ KioFm (p) rin
+Kl mrle (P)
Kol ma () ray Bz (P)+ Kz wVe2 (D) ... KaotFms (B) ran
+ KowoiFmz (9) =0 (3.79)

L 1) L S Ben(P)+-Kn « Yen(p)+
“+ KniorF'mn (p)

where
Bt (P)=Qu1(P) Qi « (P)Fmi(P)D;(p) J (3.80)

Ya(P)=Q, . (») D, () F i (p).

The determinant (3.79) has the same structure as the determinant
(3.48), and our results for the synthesis of systems with infinite-gain
stability can thus be extended in their entirety to the case of multidimen-
sional servosystems. To be specific, if each component servo considered
as a noninteracting system belongs to the class of systems with infinite-
gain stability, the entire multidimensional servosystem will remain stable
when the subsystem gains are increased indefinitely, provided that the
degenerate equations and the auxiliary equations of first, second, and
third kinds comply with the stability criteria,

It is easily understood that the results pertaining to the synthesis of
stable systems with arbitrarily large loop gains remain valid in the case
of systems with simultaneous plant- and transducer-coupling. The same
laws also apply when load coupling is additionally introduced. This case,
however, is treated in full detail in a separate chapter,

We have thus established the laws of synthesis of multivariable control
Systems which are stable even though the subsystem gains are increased
indefinitely. In the next chapter we will treat on the fundamental properties
of these systems.

§ 3.7. DERIVATION OF THE FUNDAMENTAL
PROPERTIES OF AUTOMATIC CONTROL SYSTEMS
FROM THE D-DECOMPOSITION CURVE

In subsequent chapters we will often have to assess the properties of
multivariable control systems. The corresponding estimates are
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conveniently obtained with the aid of the D-decomposition curve. According
to the D-decomposition method, the quality of the system is associated with
the numerical values of all the relevant indices. We can actually trace the
variation of the system dynamics for various gain values; furthermore,
all the estimates are obtained making use of a single D-decomposition curve.
In the beginning let us consider the evaluation of the dynamic properties
of single-variable systems, At a later stage, the results will be extended
to multivariable systems.
The transfer functions of closed-loop control systems are divided into
two groups. The first group includes symmetric transfer functions of
the type

—_"
K”(p)—l-}—_v{/(—p)' (3.81)

where W(p) is the transfer function of the open-loop system.
The second group includes asymmetric transfer functions of the form

w
KalP) =100 0 (3.82)

Here W,(p) incorporates the external disturbances and is dependent on the
point of their application in the system. The initial control conditions
can also be incorporated in transfer functions of this general form.

Let the open-loop transfer function be given by a rational-fractional
expression

__R(p)
V) =5 (3.83)

The characteristic equation corresponding to the differential equation
of the closed-loop system is then written in the form

Ri(p) __
1+ (¥ =0 ]

Ri (P +Qu(p)=0. (3.84)

Consider the effect on system dynamics of some parameter 1 (the
characteristic equation of the system is linear in this parameter):

Q(p)+TR(p)=0. (3.85)

The equation of the D-decomposition curve for the parameter t© has
the form :

— QU

The curve plotted using equation (3.86) is a locus of t-values for
which the system remains stable.

The gain-phase characteristic (i.e., Nyquist diagram) of a closed-
loop system in the case (3.81) has the form

. .4
K.(J8) = 13w (3.87)
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or, making use of (3.85) and (3 88),

Ri (Jo)

R R (jo)
K, (jo) = dun (3.88)

R (Jo)

Equation (3.88) relates the frequency response of a closed-loop control
system to the geometry of the D-decomposition curve for the parameter =.
Let us consider the case when the system gain K is treated as the
parameter t. The gain-phase characteristic of a closed-loop system in
the case (3.81) is written in the form
Kojo) = ——4t (3.89)
N (Jo)

where xg;‘:; is the equation of the D-decomposition curve for the complex K.

The quality indices of the system which follow from the properties of
the real frequency response are readily obtained from the D-decomposition
equation (3.89);* the gain margin, the phase margin and the height of the
peak on the closed-loop gain plot are also easily determined using this curve.

Im AW(je)
- V3 plane
ImKk
~7 Re AW(juwy
a b
a il 4 € 7
¢
o (w)
d
e\
7
FIGURE 3.4. Derivation of the gain charac- FIGURE 3.5, Estimating phase and gain margin,

teristic from D-decomposition curve.

Figure 3.4 is a specimen D-decomposition curve for the total gain K,
The denominator of (3.89) for some frequency o; and a given K, (the gain
for e =0) is determined by the vector bc; the amplitude value of (3.89)

for Ko and o, is thus determined by the ratio %g—. Having found the gain

amplitudes for the entire frequency range, we establish the gain character-
istic of the system.

*  For more details on this subject see Meerov, M.V. Ispol’zovanie krivoi D-razbieniya dlya otsenki

kachestva sistem avtomaticheskogo regulirovaniya (D-decomposition Curve for Quality Evaluation
of Automatic Control Systems), — Avtomatika i Telemekhanika, 12, No, 6. 1951.
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Having selected K,;, we can easily find the peak of the closed-loop gain
plot without first constructing the entire response characteristic. Taking K,
as the center of a circle, we draw a tangent to the D-decomposition curve.
The peak of the closed-loop gain plot is then given by K, to the radius of

the circle, i.e., by the ratio.

The phase and gain margin can be easily determined from the Nyquist
diagram of an open-loop system. The phase margin is found in the
following way. A circle of unit radius is drawn around the origin in
the gain phase plane (Figure 3.5). The intersection of this circle

. with the Nyquist plot gives the crossover frequency (or the
cutoff frequency) and the angle between the negative real axis and
the segment from the origin to the intersection point is the phase
margin (angle ¢, in Figure 3.5). In the nomenclature of equation (3.89)
the open-loop gain-phase characteristic is expressed by the relation

W (jo) = ’LN(%‘;) : (3.90)

whereas the equation of the D-decomposition curve for K is given by

T M)
K=— St (3.91)

According to equations (3.90) and (3.91), the phase margin of an open-
loop system is determined from the D-decomposition curve in the following
way. A circle of radius K, is drawn around the origin in the K plane; the
angle g, gives the phase margin (Figure 3.6). The gain margin is obtained
without difficulty, since the decomposition curve defines on the K plane
the entire set of gain values for which the system is stable.

Imk Ink

F plane
/7 plane
% a b 9 Re#
Q bq
c
FIGURE 3.6. Estimating phase and gain margin FIGURE 3.7. Construction of the real frequency
from the D-decomposition curve, response from D-decomposition curve,

We now proceed to determine via the D-decomposition curve some
quality indices which follow from the properties of the real frequency
response of a closed-loop system. First let us show how the closed-loop
real frequency response can be obtained from a given D-decomposition
curve in the K plane (we are concerned with the symmetrical case, see
equation (3.81)).
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We have already shown how to construct the gain plot of a closed-loop
system from the D-decomposition curve in the K plane. The real frequency
response is obtained without difficulty if, in addition to the gain plot, we can
alsofind the closed-loop phase-angle diagram from the D-decomposition curve.

The phase of K.(jo) for some frequency v; is determined by the phase of
the denominator in the right-hand side of {(3.89) at that frequency. But at
the given frequency o; the denominator of (3.89) is equal to the segment be,
and the phase of (3.89) at that frequency is a(w;) (see Figure 3.6).

The corresponding phases are thus determined for all the frequencies,
and the entire phase-angle plot of a closed-loop system is obtained. The
real frequency response P(e)is now found without difficulty. At the
frequency w; we have

P(0) =" cosa (o). (3.92)

Dropping a perpendicular from the origin (Figure 3.7) to the segment bc
we obtain from (3.92) the real frequency response at o;:

B

Po)=32. (3.93)

The value of P(w)is obtained by similar geometrical constructions at
any frequency, and the entire closed-loop real frequency response is
recovered.

Note that the imaginary closed-loop frequency response is also obtained

without difficulty; to this end, it suffices to take the segment ratio %(Figure 3.7).

This method of construction establishes a relationship between the
closed-loop real frequency response and the D-decomposition curve. We
shall now formulate some quality indices and show how to find them directly
from the D-decomposition curve in the K plane.

Pre)
Imk Vi)
4 yyﬁ 4
[
),
N "
FIGURE 3.8, Illustrating the definition FIGURE 8.9, Estimating the positive-response
of the positive-response bandwidth. bapdwidth from the D-decomposition curve.

The positive-response bandwidth is dérzfined as the range of frequencies
from e=0 to the frequency at which the real frequency response crosses
the frequency axis for the first time (Figure 3.8). Putting o, for this
crossover frequency, we write for the control time ¢

t>mlc. (3.94)
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The positive-response bandwidth is obtained from the D-decomposition
curve in the following way. A perpendicular is erected at the point K, to its
intersection with the D-decomposition curve. The frequency o; at the
intersection point gives the upper bound of the positiveness range (Figure 3.9).

Other quality indices are similarly obtained from the properties of the
real frequency response:

(a) For a time function x(f) to monotonically approach a steady-
state value x(o), it is necessary (but insufficient) that the D-decom-
position curve in the K plane does not meet the circle of radius

r=1(_°;2}'_1_ centered at the point K°2_1 (Figure 3,10).

(b) For the overshoot not to exceed 18% it is necessary that
(1) the magnitude of the vector from the origin to the D-decomposition
curve should increase steadily as the frequency increases from 0 to
(Figure 3.11);

(2) for a given K, the circle of radius K°—'2Hcentered at K°2_1 should

not meet the D-decomposition curve;
(3) the projection of the vector aw; (Figure 3.11) on the K axis should
not exceed K; for o — oco.
{c) If the initial section of the D-decomposition curve is sufficiently

close to an arc of the circle of radius K"'?H centered at K”;l , the distance

between the circle and the D-decomposition curve subsequently
increasing (Figure 3.11), the transient time is between the limits

I, (3.95)

where o, is the crossover frequency.

ImK
r
¢
=7
] a ReXn
Im /? / = /{ﬂ *7
] 4o
{ Njw)y Rek w
l— /(U—D‘ we Njuw)E
FIGURE 38.10, Determination of necessary FIGURE 3.11. Determination of
conditions for no overshoot from the D~ de- quality indices from D-decompo-
composition curve, sition curve,

It is significant that the above-described properties of the D-decomposi-
tion curve are directly related to the magnitude of the total system gain.
A number of conclusions can be drawn on the basis of these properties.
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The following corollary obtains from property (a) above: if for reasons
of precision the total system gain is greater than the diameter (K,+1) of
the circle, the transient process cannot be monotonic. From property (b)
we have two corollaries:

(1) To satisfy the sufficient conditions for overshoot not exceeding 18%,
the system gain should not be greater than the part of the diameter (Ko+1)
to the right of the semiaxis Re K (Figure 3.12).

(2) Overshoot will not exceed 18% irrespective of the actual gain if
the D-decomposition curve coincides with the imaginary axis in the K plane,
and the entire positive real axis belongs to the region of stability.

ImF

Njw) _
N S ReA

@
FIGURE 3.12, Illustrating the determination FIGURE 3.13. Illustrating the construction of the
of conditions for overshoot not exceeding 18%. closed-loop frequency -response characteristics

from D-decomposition curve and auxiliary curve
(the auxiliary curve is independent of 1),

A corollary which follows from the method of construction of the
positive-response bandwidth has a considerable bearing on the evaluation
of the control-system structure. It is easily understood that the upper
boundary of the positive-response bandwidth is always less than e,
where o is the frequency at the intersection of the D-decomposition
curve with the K axis (Figure 3.12) and K=K, is the critical gain. This
corollary will be applied at a later stage to derive some very important
conclusions concerning the efficacy of control structures. v

We have already emphasized that the above properties of the D-decompo-
sition curve pertain to the case of symmetric transfer functions. Let us
now consider some quality indices of a system with an asymmetric transfer
function (3.82). First, we construct the real frequency response of the
corresponding closed-loop system.

Since external disturbances and initial conditions do not influence the
characteristic equation, the general gain-phase characteristic incorporating
external disturbances and initial conditions hag the form

Ry (jo)

) (Jo) —573—-

K (jo) = —— RUO) (3.96)
T

Q (Jw)
R (Jo)

The numerator of (3.96) we call equation of the auxiliary curve,.
In this more general case, the determination of the system properties is
based on the D-decomposition curve and the auxiliary curve. It follows
from (3.89) that the auxiliary curve is also required in the symmetric case,
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whenever the relevant index is not the gain but some other system para-
meter. The frequency responses (the real response included) can be
easily constructed once the D-decomposition curve for an arbitrary
parameter T and the corresponding auxiliary curve are known. Figure 3.13
is a probable form of a D-decomposition form in the ¢ plane. It follows
from the preceding and directly from Figure 3.13 that the vector bc gives
the amplitude value of the denominator in (3.96) at the frequency w;:

The phase of the denominator in (3.96) at the frequency o; is the angle a{w:).
Let the numerator in (3.96) be independent of t; a probable auxiliary

curve for this case is shown in Figure 3.13. We further assume that

the numerator for o; is represented by the vector ad. The phase of the

numerator at this frequency is B(e;). The amplitude value of (3.96) at the

frequency o; is given by the ratio of the corresponding segments:

. R (jo)
IWl R Rl(j(o) __ad
1. LQUe | T b
<+ R(jo)

The magnitude of (3.96) at any other frequency is obtained similarly, and
the entire gain response corresponding to (3.96) is thus recovered,

The phase of (3.96) is the phase of the numerator minus the phase of
the denominator. The real frequency response at ; is obtained as follows,
The vector ad is translated from point a to point ¢ (Figure 3.13) and the
vector bc is continued as is shown in the figure. The phase of (3.96) at the
frequency o; is then y(»;), since obviously

v(0) =B (0;) —a (o).

The real frequency response at the frequency o is

cd ‘
2 CosY (0,)-

Dropping a perpendicular from the tip of the vector ¢d’ to the dashed
line, we obtain for the real frequency response at o;

Pe)y=3%.

The real frequency response at any other frequency is obtained in a
similar way, so that the entire frequency response of the system is recovered.

If the auxiliary curve is dependent on the parameter 1, we proceed as
follows. The numerator in (3.96) is partitioned into two parts, one
independent of T and the other a function of v. Equation (3.96) is then
written as

. W, (Jo)+ W, (jo
K (jo) =TE2U LU0 (3.97)
R (jo)
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Figure 3.14 shows the D-decomposition curve in the t plane and the
curve Ws(jo). We now choose any particular value of =, say =1, We
can thus find the vector tW;(je) for any frequency o;. These vectors are

plotted as in Figure 3.14. A choice
of any other numerical value for 1
THf d only alters the scale of the vector
tWa(jo). For the given value of =,
the magnitude and the phase of the
numerator in (3.97) are represented
by the vector joining the origin with
the tip of the vector tW;(jo) at the
corresponding frequency. From this
point on, the construction of the fre-
quency-response characteristics
proceeds as before, in the case of
FIGURE 3.14, TIllustrating the construction of 7 -independent numerator in (3.9 6).
closed-loop frequency-response characteristics The method proposed for the
from D-Eic-?compositi?n curve and auxiliary curve construction of the real frequency
(the auxiliary curve is dependent on T). response suggests the following
properties of the D-decomposition
curve and the auxiliary curve, which
are useful in the preliminary evaluation of control properties.

A. The positive-response bandwidth is determined by the frequency o
at which the numerator and the denominator vectors assume a mutually
perpendicular orientation for the first time. The transient time in this
system, as we have already indicated, is

d,

Im

19

> —.

O

If the crossover frequency o, is known, the value of t for which e
determines the positive-response bandwidth is found as follows. Draw
the numerator vector aN at the frequency w.(Figure 3.13). From the
point w. of the D-decomposition curve drop a perpendicular on a¥N. The
segment ae is the required value of «.

B. If in some initial frequency range the magnitudes of the numerator
and the denominator and the angle y{o) between them remain virtually
constant, "and if subsequently the ratio of the two magnitudes decreases
while the angle y(o) does not decrease, the control time lies between the
limits ’

A 4n

r <t —.

@

C. The sufficient conditions for overshoot not exceeding 18% are
satisfied if condition B is met and the numerator and denominator are not
mutually perpendicular at any frequency.

D. The necessary conditions of no overshoot are satisfied if, for
respectively equal distribution of frequencies along the numerator and
denominator curves, the magnitude of the numerator decreases faster
than the magnitude of the denominator at the corresponding frequency.
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The above properties of the D-decomposition curve (in the case of a
symmetric closed-loop transfer function)and the properties of the D-
decomposition curve and the auxiliary curve (in the general case of an
asymmetric closed-loop transfer function) will be used in the sequel,

Our estimates can be extended without difficulty to multivariable
control systems. At the present stage, we consider the case of a bne-
parameter D-decomposition curve. In the next chapter it will be shown
that the dynamic properties of control systems can be evaluated using
the D-decomposition curves for subsystem parameters.

In Chapter Two we derived a general expression for the j-th controlled
variable in the most general case of interaction through the plant, the
control, and the load. This expression has the form

V30 =5 {0 A (D) Ko s D)+ £ (00 +
+ ,=Z, [(_I)IHAU (2) kg bz (P) e (P)J -+

n n
+ 2 [(-1>‘*’Au ® ZC (p)Ym(P)]}~ (2.34)
T k]
The characteristic equation of a multivariable control system is
A=0. (3.98)
Suppose that we are concerned with the influence of the parameter T
of the i{-th subsystem on the dynamic properties of the entire multivariable

control system. Note that the parameter t; isalinear termin equation (3.98).
Under these conditions, equation (3.98) may be written in the form

T, -+ §A,, (—1* =0, (3.99)
’z)

whence follows an equation of the D-decomposition curve in the t; plane

. .
D8y (=1
i=1

= )
T = o (3.100)
Dividing (2.34) by ¥;.(p)and making use of (3.49), we write
fi(p)
v V0K, e, L
Yiet (P) ]
bt (P) b4 Fay (1)
21
n n n n
+f‘_‘= [ (1, (p); b () 72 L) J+ 12, [(—I)Hl,q,, (p)kz i (p) -’;%]
= =1 = =1
At L. (3.101)

n
Ty 3 Ay (1)t
iz -
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Dividing the numerator and the denominator in (3.101) by Ay and putting
p=jo; we write

Yi(J0) _ Wi (o)
Vio) 5+ Du ()’

where

Wto( (/m) == (~1)‘+1Al] (](')) [Ki tot +gll (/m) Y{:ciio;zﬂ)]+

k=1 k=1

4 D[ Ay o) X1 (o) FELD] + B | (1A (o) X Cur (o) ?;—83]
k)

is in fact the equation of the auxiliary curve. We easily see that

n

> Azj(—l)"’
Drl (](‘))= =L iF) A

is the equation of the D-decomposition curve (apart from the sign).

All the preévious results concerning the application of D-decomposition
and atixiliary curves for the evaluation of dynamic properties of single-
variable control systems can thus be extended to multivariable controls.
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Chapter Four

GENERAL PROPERTIES OF MULTIVARIABLE
CONTROL SYSTEMS WITH INFINITE-GAIN STABILITY

§ 4.1. DERIVATION OF THE GENERAL EQUATION

{(a) PROPORTIONAL SYSTEMS

In the previous chapter we established general rules for the design of
multivariable control systems which permit indefinitely increasing the gain
of the various subsystems without losing their stability as a whole. The
fundamental properties of these infinite-gain stable systems can be
determined by examining their matrix equation.

Ul % g _”_iﬁ
v ”t /P}}‘il Kia |_4:£| %/p/ },il ﬂl/P)E ’ ’
ref 3
> > | >

vV
Mai

h "VM Y%
< F it
> L< [
Z riny mlp
il Font 177

FIGURE 4.1, Dlustrating the derivation of multivariable control
equation: proportional systems.

Suppose that the controlled variables are coupled through the plant and
the measurement devices. Figure 4.1 is a block diagram of the prototype
system analyzed in this section. Stabilization is provided by an elastic
negative feedback element connecting the plant output with the input of
the measuring device. Alternative feedback configurations will be con-
sidered in what follows. The essential point is that this system belongs
to the class of structures with infinite-gain stability. '

It follows from the results of the preceding chapter that the system
depicted in Figure 4.1 must satisfy the following structural conditions:

1) The polynomial e, (p)e,(p) is of lower degree than the polynomial

D, (p) D, (p). (4.1)

2) n—m+r+¢,<2 (4.2)
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where n;, m,, r;, q, are the degrees of the polynomials F,,(p), Fm (p), R,(p) and
Q(p) , respectively.

We now derive the equation of the system in Laplace transforms.

A. The equation of the controlled object

Di(p)e™Y (p) =K [YZ (1) =B (P72 () +, (p)] : (4.3)
ki

B. The equation of the measurement device

Ri(p) X;=, [V,m,(p) —Y,(P)+ N (P (P — Yo (p)) — F2LB (p)] . (4.9)

k=1
ki

C. The amplifier equation

X (D)=K, . X{(p) (4.5)

D. The controller equation

Q, ()Y (p)=0,X](p). (4.8)

Eliminating ¥;(p), X;(p) and Xj(p)between equations (4.3) —(4.8), we
obtain after simple manipulations

[D:(P) R, (P) Qi (P) Frus (P) €+ n8,K, . D, (P) F oy (p) €7 +

+ KK, S0 Fp (D)1Y 1 () + [KIV‘IK“'SIFMI (p) kgl"u P+
ki

G+ KR (p) Qi (P)Fri (D) kglam (P)] Yop)+
roti

+ K 8,K; . F oy (D) Elam (DY o (P) = KiK; 2D, F i (D) Y e (D) +
Hry)

+ KK w8, F oy (D) kgl"m (DY 1t (D) + KR, (8) QuUP) F ot (D) (D) +
[y
+Kud K Fo(p)i(p)  (=1,2, ..., n). (4.7)

We introduce the following notation:

D, (PR, (2) Qi (p) F s (p) € = a,(p) WdK, . =K, ,
D,(p)Fo(p) e =b,(0); KK, Sy =K s (4.8)
KR, (P) Qi (D) F i (D) =¢, (P} a,(P)+K, ., b,(p)+

+ K o (0) =ay, (p).
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Now equation (4.7) takes the form

e, (DY, (D + [Kthml (2) kgl"u (2)+¢ é} o () +
vy

+ KiF ot (2) 3,1 (p)] V2 ()= Koot (9)V 1 (0)+
ki

+ K ioF i (P) él Fin (DY 11ee(D) 4+ ¢/f: (0) + KyionF s (0) 1 (2). (4.9)
k]

The complete set of equations is obtained by putting =1, 2, ..,
The complete set of equations can be written in matrix form:

AY = (KouF  + B) Vi -+ NF. (4.10)
Here
a (P Kis bi(PH KiwolFm (P) ria (D) + .. KitortF i (P) rin (p)+
+ KitorFm (9) + KiworF'm (P) 4+ + KiorF i () +
+ Ci (D)2 (p) +C1 (p) ain (p)
KiotFmi (P ris (D + 2 (0)+Kise b:(P)+ ... KisorF i (P) i N+
A= =+ KiotFnt (P) + + KirorF'mi (P) + Kiwofni(p)+ |,
+ Ci(p) oy (p) =+ Ci (p)) 2in ()
Kot ma(PYrm (P) 4 e 8a(P)+ Kpiorba (P) -+
+ (Karoenn (P) + + Ko mn (P)
+ Ca(p)) 0 ()
KiosFm (9) 0 e 0
[(tol‘Fm = 0 KaortFma (P) ... 0 ,
0 0 . KaweFn (2) (4.12)
0 KiooFmi (P) 112 (p) - KytorFmi (P) Tin »)
B= KatorF 2 (0} rai () 0 voo KororFma (P) r2a (P) s
Knioif mn (P) rns (P) ‘e 0
&1 (P)+ Kot i (9) 0 0
N= 0 € (p)+ KaeorFm (P) ... 0 ,
Y Y oor €1 (P) + Knrorfnn (P)
Yi(p) YVirer (D) fi (p)
Y2 (p) Yaret (P) f2 (P)
=l I Ye= : , F=| -
Ya (p) Vucer(p) )

From (4.10) we obtain a general matrix equation for the vector value
of the controlled variables:

Y = A7 [(KFm~+B) Y.+ NF). (4.12)

Further analysis requires explicit expressions for each i-th variable.
This can be done along the same lines as in Chavter Two, where a simpler
case was considered.




The system determinant A is

a2, (P)+Ki o 51(P)+ KiotFen (P)riz(P)+
+ Kot Fm1 (P) + (KiorF m (9) +
+ Ci(p) az (p)

A=l T KaotFma(p)+ + KatarF s (P)

+ C2(p)) 01 (P)

KpiorFmn () a1 ()
+ KnrorFun (P) +
+ Cn(p) 0 (P)

The transpose of matrix (4.11) is

+ (Kot n2 (P) +
+ C; (p)) @21 (P)

+ KitotFmr (P)

+ Kot Frr (P) + + Kzworf m2 (P)

A =
T+ Ciy e (p)

Kot Fony (P) nn (P) +
+ (KitotFai (P) +
+ G ((p)) oin (P)

Koot Fmz (0) T2 (PY+ a2 (P)+Ka o b2 (P)+ ...

.......................

‘e an(p)+Kn st o)+

a (P)4-Kis b (D)t KowaFma (P) ran () ..«

KiotFm (P) 11z ()t a2 (p)+Kz e b (D) + ...

......................

v 8 (P)+Kn g ba(p)4-

Kot Py (P) rin (p) +
+ KiotFm (p) +
=+ C1 (P) a1 ()

Ka10tFma (P) ron (p)+

+ Karor P2 (P) +|.

+ C2(p)) 02, (p)

-+ KatorF mn (P)

Knorf mn (P) rm (P)+
+ KniotFun (P) +
+ Crn(p) op (p)

KarotF mn () Tz (P)+

+Cnilpyom(p) |,

+ Koot Fmn (9)

(4.13)

(4.14)

Making use of (4.13) and (4.14) and remembering how the inverse of a

matrix is formed, we write

An (=t Ay,
(D2 4,

A (1"

[ ). P

v (=14,
v (=12 A,

(4.15)

where (—1)i+i4; are the cofactors of the elements of the transpose, Carrying
out the multiplication in the right-hand side of (4.10) and making use of {4.12),

(4.13), (4.14), and (4.15), we find

Y, () Ay —Ay ...
l Ya (P) “ 1 — Ay Ap
“=—A— N+ 4y
Ya(p) | (D7 4y,
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KiwotFmi () Yiret (P) + Kicor Fns (P) ; re(P) Vet (P) +
+ (1 (D +KioFm (P | (9)

KatorF iz (P) Yaret (P) + KatorFima (P) kz rak (P) Yeres (P) +
=1

k2
+ (2 (P) + KarotFna (P)) 2 (P)

KjtotFmy (D) Y jret (P) + KjroKmy (P)kz 738 (P) Vet (P) -+
=1

rE]
+ €5 (p) + KpoFup (PY) |1 (P)

a-1
KntortFmn (P) Y reet (P) 4+ Kol mn (P) 122 rr (P) YVeres(P) T
=1
4+ (n (P) + KnioeF ma (P) ) Fn (P)

(=D Ay L (=) A,
D2 A Ll (1) A

......... <

(4.16)




Performing the matrix multiplication in the right-hand side of (4.186),
we find

M=

(—D'** 4, [ KitotFmi (P) Yier () +

-
[}

+ Kiwoe Pmi () 22"1;: (D) Yeret () (¢ (P) + Kot Fur (P)) (P)]
P

n
X (—DE Ay [Kimf.,., (P) Yirer(p) +
i=1

Yi (p) - n
Y2 (p) +KioFmt () 3, it (9) Vet (9) + (€1 (2) 4 KiorF s () i (p)]

| ok

. [ I T T . (4 . 1 7)
Yi(p) Al &
! . 2 (—l)j-H Ay [Klthmi () Yirer(P) -+
i=1
Yalp) + KP4 3, 10 B) Ve P @1 01+ Koot (D) 112
=1

O A, [K,mFm,(m Yieet(p) +

n-1
+ KiorFmi (P)kz e {P) Vret (P) + (€ (P) + KieorF i (P)) F1(D)
=1

We have thus obtained equations for each j-th controlled variable in an
n-variable system with plant and transducer coupling:

n

Yy(p)= % 2 —1*a, [szsz (DY 1es(P)+

i=1

+ K oF (P)kizlfjk (P)Y peet (D) (€1 (P)+ Kot F s (D)) [ (17)] . (4-18)
k£E)

Equation of the controlled variables in a system with plant coupling only
is obtained from (4.18) by putting ru(p)= 0.

The equation of the j-th controlled variable of an n-dimensional servo-
system can also be derived from (4.18). It suffices to put in (4.18) aw(p)=0
(remember that A and Ay are dependent on au(p) and rin(p)).

The structures corresponding to integral (or floating) systems
of necessity contain at least one integrating element which is not included
among the structural components of the plant and which is not enclosed
by the stabilizing loop /39/. The structure shown in Figure 4.1 thus
corresponds to a multivariable system with proportional subsystems,
since the stabilizer embraces the entire forward path, with the exception
of the controlled plant itself. For the steady-state case we have

@ O)=1 6,0)=0 ¢;O)=K; Fn0)=1; F,(0)=0, (4.19)

and the i-th controlled variable under steady-state conditions is thus
expressed by the equation

Y0 =5 X" A0 | K 1t®) + Koo Zria¥aeO+Kf |, (4.20)
0 i=1 k=1

ki
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where
14K tor Kiotriz4012 .. Kiotrin+oupn
Ay= Kaioerarag 1+ Ko oo KawotFan+020 (4 .21)

Kntortm =+ 0 .. el 14 Kpeor

14+ Ko Kaworras 4oy ves Kutot m 40

Kiariz 4012 14 Kaior vee Kutorr na + 0z
Al s . 4,22
to Koy 4oy 14Ky Kmot’nj'f'anj ( )
Kioer1a+ G4p 1+K,”(;,

All Ay;(0) can be found from (4.22),

The steady-state value of any j-th variable can be obtained from (4.20).
As an example, let us consider a system with three interrelated controlled
variables. To find the steady-state value of the second, we write

3 3
Yy (0)=Z:‘3' 2(_1)2“-421 ©) [Kltorylref(0)+ Kllotk_zl r?kykref(0)+Klfl] ' (4.23)
i=1 EA2

14+ Koo KiotP1s 012 Ky M1+ a3
Ay =| Kata?21 + 02 14Ky Karorras 4025 |,
Kawonrsi 4051 KarorFsp+ @se 14 Kstor (4.24)
1+ Kitor Kaworrar + 0z Karorrar - a3
A= KioFia+ou2 14+ Ko Kofsat 052,
Kiotria+ @3 KaworFas -+ 023 14 Kstor
whence
_ Kool + 021 Ksorrsr +ag
An= Katorras + g3 14 Ks o l' (4.25)
_ 14+ Kyor Kawoersi -+
Am_ Kiotr1s4 a3 14+ Ko |? (4'2 6)
_ 1_+K1w! Kaorls1 40
A%_l Kiorr13+ g3 Karerasass | (4'27)

Substituting (4.27) in (4.25), we obtain after simple manipulations

Y2(0) =5 { — (Ko +0a0) (1 + Ko =

— (KyorPa3 =+ 0o (Ko st =+ @an)] X

X KoY 11er 0) + Koo (Farl 1066 (0) 4 rg¥ 5.0 + Kifi] +-

+ (1 + Ko {1+ K1) — Ko 13+ 013) (Ko P =+ 01)] X

X [Kziot 2101 (0) 4= K ror (raa 1066 (0) 4 r5¥ 3.0 (0) ) Kofo] —

— (1 Kior) (Kzeor 23+ %23) (Kpeor P13 4= 01} (Koo "o 4 029)] X

X KoY 3101 (0) = Kot (FrY 16 (0) - rog¥ 3,er (0) ) - Kofisl ). (4.28)

The steady-state value can now be calculated if the numerical values
of all the parameters are known. Furthermore, some general properties
of these systems under steady-state conditions can be established. An
interesting particular case is provided by an ordinary plant-coupled
multivariable system having r4= 0 and by a multidimensional servo-
system with ax= 0.
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Let us first consider an ordinary multivariable system (ry=0). Putting
ra=0 in (4.28) and (4.24), we find
1

Y, (0)= T+ R ™ " { =1+ Ky o) @ — 050} X
gy 14 Ky ot (%)
gy G3p 14Kt

X Kol 10t 0) 4 Kifil + [(1 4 K o) (1 4 Ky o) — y5ty;] X
K Kyt 20er(0) + Kofo) — [(1 4 Koo @53 — ap3055] X
X KoY 3rer(0) + Kofal ) (4.29)

Dividing the numerator and the denominator in (4.29) by KjwKowo Kz and
taking Kl(ot=K2tot=K3mt_>°°: we find

lim ¥, (0) = ¥,.:(0). (4.30)

K>

It is clear from (4.30) that the accuracy of each controlled variable
increases as all the subsystem gains are increased. In the limit Y=Y, .:
moreover, the coupling between the individual controlled variables
vanishes in the limit and they become independent, noninteracting.

This result derived for the particular case of a three-variable system

is readily generalized to any multivariable control system. Indeed,

in the nonsingular case the rank of the determinant Ay; is one less than

the rank of the determinant As,and the maximum number of factors Kp in

its expansion is [J K,.. This product is further multiplied by K.V
k=1

Reti
so that

lim yj(o)”yjref- . (4.31)

IH] K o>

Increasing all the subsystem gain parameters (which in this case is
structurally permissible without loss of stability) thus ensures that the
controlled variable retains its steady-state value to arbitrarily high
accuracy and that the j-th controlled variable is independent of all the
rest. If the gain is high but finite, the steady-state accuracy is not ideal,
and uncoupling is achieved to accuracy of e (we shall refer to it as e-
uncoupling). The value of e can be determined if the numerical values of
all the parameters in the equation are known.

As an example let us determine the steady-state value ¥,(0) in the
particular case of a two-variable control system with the following
parameters:

Ky =500, K,=500, apy=ay =05, fi=1, f=1, K;=2, K,=3.

From (4.20) for n=2 we have

2
Y1(0)= 'A% [2.‘{(—1)”1 Ay (O)J [Kio 1res+ Kifi]- (4 -32)
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Substituting, we find

14 Ko a
‘121l ‘ 1+an =(1 +K1mr) (1 +K2(0t)—q’12a211
14 Kitar Og1
At”= G2 1+ Kz o
Ap=14+Kpo» Ap=0p

1
(1 + Klml) (1 + szl) — Oyg0g; {(1 + K2w[) (Klmlyl m‘+ Klfl) -

— g1 (Koo 31er (0) + Kofo)} =
_ (4 Kaa) (KitarYiret + Kify — 021K o0t Varer (0) — 01 Kafa) _
- (14 K o)) (1 Kz ror) — 01202 -
2505007 e¢ (0) + 1000f; — 0.5 - 500 prer (0) — 1.5f
- 25100 —0.25 -

1 25 15
=0.99Y1,64(0) + 557 fr — 35705 ¥ 2+ (O) — 55705 Fo-

Bgy=

Y (0)=

it follows that already for K. = 500 the effect of extraneous parameters
(i.e., the effect of coupling) in plant-coupled multivariable control system
is vanishingly small under steady-state conditions.

Let us now consider the case of a threc-dimensional scrvosystem.
All a;, are zero, and the determinant is

14 Kior Kior"i2 Kioirs

A =] Kzor2 14+ Koo Kaworras R (4.33)
Ksworra Kaorr a2 1+ Ky
1+ Koo Koworran Karorra

A= K1z 1+ Kayror Kstorrse (434)
Kiottis  Kaioiras 14 Kjror

The properties of the controlled variables can be elucidated for the
particular case of Y{(0). Ay, Ay and A; are required for the analysis,
and from (4.34) we have with proper signs

14+ Kaor KatotFas
= Kotorras 1+ Kyt
Ay = — Kiara Kaorrs

AT Kioris 14 Kator |’
A _ Kl(ov.’lz 1+Kno(
317 Kiyoeris KawonTas

1
T4 Kir  Kiwrta Kiaf1s X
Kaiorral 14 Kotor  Kator'2s
Kirorrs Kswora2 14 Ksor

X “(1 +K2mt) (1 + KSmr) - K2totK3wxr23r32] [Kl(otylref+ Kl tot X
X (r1gY geei—+ 1Y ret) + Kiftl — [ Ko P12 (1 Kao)— KuiorKsial 13732} X

X [Kaor? 2vet + Ko oilra¥ tret - Faa¥ cer) ++ Kofol -+
+ [Kiia12Ko00 "3 — Ko T3 (1 + Kyl X
X [KatorY sret + Kator (Fa1Y 1ees 4 730 2re) -+ Kafsl 3 (4.35')

Yi(0)can be found from (4.35') if the numerical values of all the parameters
are known. The degree of influence of the other inputs (the extraneous
reference values) depends on ry. It is also clear from (4.35')that increasing
the subsystem gains does not decouple the system.

All

Yi(0)=
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(b) INTEGRAL SYSTEMS

Let us now consider a structure with integrating (floating) control,
In Figure 4.2 the stabilizer embraces only part of the forward path,
which does not include the measuring device. For integral control it
is necessary and sufficient that the self-operator R’(p) contain an integrating
element, i.e., R'(p)=pR(p). We now write the equations describing the
transient and steady-state properties of this configuration.

&l _JL 5 _’{'_”.
Rilp) | K. o @ilp) w D;(ple ™ y
Koot Xt i 1 %z i ,
> > B > >

] J
n
o by
w=7

| ] r.C34
n
Eron L<|
#=t fai lp)
NEL _—f”" / p /

FIGURE 4.2. Tilustrating the derivation of multivariable control
equation: integral systems,

The plant equation is as before
n
D(pY, (p)_——Kte_TlpI:Yi’(p)_‘kzlalk(p)_'_fl(p)J' (4.36)
kAL
The equation of the measurement device

X (PR, (D) =p,{[Y (D) =Y, (P)] +k§ ik (DY rer(P)—=Y o (D)]). (4.37)
#i

k

The amplifier equation

Xi(p)=Ki[Xi(p)— £y, (p)]. (4.38)

The controller equation
Q. (A)Y () =8,X](p). (4.39)
Eliminating ¥i(p), X:(p) and X; (p) between (4.36) —(4.39), we obtain
after simple manipulations the following equation for Y:(p) :
[D:(2) R (2) Qu () F i (P) PE™ + Ky 0,R, (P) Q, (£) F 1 (P) €7 +
KKy SuF o (Y 1 (P)+ WK KO F i (0) B ria (D) Y4 (D) +
[
+ KR (P) Qi (P) PF o (P) EZ, o (AY () +
LET)

+ 8K, . KR, (p) pF (P)kgl 0 (P)Y, (p)=
fry)

=KK; .00 F i (PYY |, (P)+ KK, athmz(P)kgl] ri (DY e et(P)+
Fy]
+ K [Ri () Qi (P) F i (P)+ R, (P) PF 1 (P) 8,K,.) 1 (D). (4.40)
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Putting i=1, 2,..., n, we obtain the complete set of equations which
describe the dynamic properties of the multivariable structure under
discussion. To reduce the set of equations to matrix form, we write

D(p) R () Fri (P pe'¥ =a,(p). 8Kia=K,, .
R(P)Qi(P) F oy (P pE™Y =1, (D),
RDFyup)p=g,(p) KK D =Ko
KRi(p)pQi(P) Fri{p)=ci(P):

a,(p)+K; , b,(P)+ Ky Fms (P) =@, (D).

The equations can now be written in the form

a;(p)Y, (P)'f‘KlmFmt(P)Z‘.I‘ ru(D)Y, () +
ki

+e (P)Elau OY 0+ K, « Kigi(p) }g) o ()Y, (0)=
pet

ki
=Kilolle (p) ylref(p) + Kltotle (p) kglrlk (p) Ykref(p) +

kki
+[cl(p)+KiK1st g:(ﬁ)]f‘(P) (i=1121---1 ”’):

or in matrix notation

AY =BY,

ref

+CF,

e, () Ry ... Ry
— || Ra a33(p) ... Raa

Ry ves Agn(p)

where
Ry = KyiaFm1 (p) rz+ (01 (0) + KiKy o £1(P)) 02 ()
Ry =KiaFm1 () 1+ (c1 (D) + KiK' o £1(P)) 4, (D),
Ry = KyorF 2 (p) oy 4 (€2 () + KoK o £2(P) 0ot (P
Ry, = KyiF m2 (D) ron+ (€2 () + KoKy . 82(P)) @24 (P)s
Ru=KuirFma () T () (€a (P) + KoK o £:(0)) 0 (D)

Kot my (P) KiotFm ()12 (P) .. KiiotFmi (P) 14 (D)
B = KaaF mz (P) KaotFma (P) oo KytotFmz () 120 (P) s
KnioF ms (P) 7t ... oo KpiotFran ()
a(P) KKy & g1(p) O ... 0
C=10 €2 (P)+KoKy 1 g2(p) ... O
0 0 oo ep(PY-KiKpn 5 8a(P)
Yi(p) Yiet (P) f1 (p)
Ya(p) Yaret (p) fa(p)
= . ’ ref = N ’ = : .
Yo (p) Yaret(P) a(p)

“.

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

We will now derive an expression for the j-th controlled variable.
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From (4.43) we have
Y = A" (BY, -+ CF). (4.48)

Expanding (4.48) and proceeding along the same lines as in the previous
case, we find

n

n
2 (_1)1+p Alprtchmp » hz'l Tor (D) Y res ()
p=1 =

.......................

n n
2] (—=1/* A, K, s (”)kz. Zor (P) Yeret (P) |-
= =

n n
2] (_])IH-D AnpKoxotFmp (P) kzl ’pk (p) Yk ref (p)
p= =

B}

2 1P A 6 D)+ KK RN
“

43 0P A 0 (KK, o b)) | (4.49)

Z (_1)p+ll Anp (cp (p)+Kpr st bp () ) fp (P)

p=1

Here all r,=1. From (4.49) we easily obtain an equation for any j-th
controlled variable:

Yilp)= %{ 2= A [Kmemp Zror (P)Yaeet(P) + [0 (P) +

+KK, .2,(0)] fp<p)]}. (4.50)

In particular, in a three-variable system, we have for the second
controlled variable ‘

3 3
¥y(p)= ALs [E’l(- 1)2+DA29 [KomFmp(P)kgl ror (D) Ypres(p) +

+(e, () + KK, . b,(p) fpm]}. (4.51)

We write equation (4.51) in expanded form:

ay (p)
a9 (p)
a5 (p)
a1 (p)
a3 (p)
a5 (p)

Ay =

A=

a12(p)
a3 (p)
a3 (p)
as (p)
ags (p)
ag; (p)

a45(p)
azs (P)
233 (p)
a3; (p)
a5 (p)
295 (p)

Here

@13 (P) = KyorF1m (DY i (D) + 11 (P) + KK, 81(D)] 042 (),
a13(P) = Kyt F1m (0) ria (B) + 01 (P) + KK . 81(D)) s (P)s
@ (P) = Kyt Fom (9) 1o (P) - [2(8) + KoK « &2 (D)) 0y (P)s
53 (P) = K10 o (D) a3 () 62 (p) + KoK . 82 (P)] @3 (p),
3 (P) == KsrFam (P) ra1 (P) +[e5 (P} + KoK o 83(D)] @y (D),
3 (P) = Kyiofsm (P) P2 () + [€3(P) + KoKy « 83 (D)) @2 (P),
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whence

| Ra Ry _ Ry _ja® R},
BT Ry ane)|T TP | Ry Ry PUIRL au |
whgre
Ry = Ky orF 2 (B) ras (B) + (ea (D) + KoKy o 82 () @31 (P)
Ryt = KyoiF iz (P) ra1 (P) - (63 (2) + Ko, 83(P)) 03y (2)s
Ry = KyrtF ma (P) ras (P) + (€2 (p) + £ o Ko (D)) 05 (D),
R;Q = KZ(OIFMZ (p) r21 (p) + (02 (p) +K2K2 st gg (P)) azl (p)’
Ré] = KhmF,m (p) T3 (p) +(Cl (p) -+ K1K1 « 81 (p)) a5 (P
R;? = K2rorFm2 (p) r23 (P) + (CQ (p) + K2K2 st g2 (p)) azg (p),
R;? = Kamema (p) r:ll (p) +(03 (p) + K3K3 st ga (P)) (1,31 (P),
0 =Kl m ()15 (P)+ (e, () +KK, ,, 8, (P)) oy, (D),
ahd

Y2 () = 2 (— (IKF 2 () Pt (P) (e () -+

+ KoKz « 82(P)) 021 (P)] @53 (P) — [KyioeF mn (£) 123 () -+
F (e (P) + KoK o 82(0)) 0 { D) [K o Fiss () 131 (P) 4
+ (63(p) + KK 8:(P)) 031 (P)]) (KieoeF ot (PVY 10er (£) -
4 Kol m1 (P) 1Y 20t (2) + Kyoor Pt (D) 113 (P) Vg cer( ) +
(1 (P + Kl « b1 (D) (D)) + (@0 (D) 25 (D) —
— [Kieof m (2) ria(P) + (€1 (P) + K« 81(P)) 215 (P)] X
K [KseorFms (P) ra1 (P) (3 (P) + KK £3(0)) ear (P)]) —
— (KacFma () 121 (P) Y 1166 (£) + KororF ma (0) Y 20et (D) +
+ Koo ma (D) roz (D) Y aet (D) +(c2 (9) + K, o Koo (D)} (D)) —
— @ (D) [KooiFme (D) o (D) + (65 () +
+ K, o K22 (P)) g3 (P)] — [KyeoFomt (P) 13 () +
+ (P + Ky o Kig1(9)) 05 (D)) [KaiorF ma (P) rn (2) +
(2 (D)4 KK, « 82(P)) ay (P)]) X
X Ko ma (P) 731 (D) Y 116 (D) + 732 (D) Voot (P) +
F Vet P+ (03 (2) + KaK 4 83 (D) 2 (2))}- (4.52)

The steady-state value of the i-th controlled variable can be readily
found from (4.52). First, however, we should determine A;;(0) from the
transpose making use of standard rules of matrix algebra.

As an example, we calculate the steady-state value in a three-variable
system. From (4.52) we find

yz (0)= % {(—' KQtotr‘HKam + K2torr23K3wrr31) (Klwlylref+

+ Ko 12Y set + Krior 13 3re) 7 (KiotK3 tor — Ko 135000 31) X
X (Koo 1+ Koo ares+ Kool 23 30er) —
— (K1 oo 3 — Kiior"13K 2o T 21) X
X Kol st¥ 1eet + Kato 52 2 et KV e} (4.53)

where
Kitor Kiweriz Kiafis
A==} Koran Karor Kyrorres |. (4-54)

Ksorsy Kazrorfsa  Kstor
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Thus, in addition to the general steady-state properties of the system,
we have derived working relations for the determination of the controlled
variables.

§ 4.2, SYSTEM DYNAMICS

. We now proceed with a discussion of the dynamic properties of pro-
portional and integral configurations,

(a) PROPORTIONAL SYSTEMS

The system depicted in Figure 4.1 will retain its stability when the gain
parameters of the elements in the stabilizer loop are increased indefinitely.
This structural property is expressed mathematically in the form (sce (4.2))

ny—m g, <2

Having chosen a stabilizer, we make connections that satisfy the
structural criterion above and thus create a system which in principle
remains stable despite an indefinite increase in the subsystem gains.

To ensure realizability, the degenerate and the auxiliary equation -should

of course satisfy the stability criteria. Since the structural stability
requirement is a priori satisfied, we have to choose the stabilizer para-
meters and the gains of the starting single-loop system so that all the
coefficients of the degenerate and the auxiliary equation meet the respective
stability criteria. It is at this stage that we should take steps to ensure

not only the stability but also the desired dynamic characteristics (speed
and transients) of the control system.

Let us consider the fundamental proportional-control structures. It
will be assumed throughout that the stabilizer uses passive elements only.
TFor this reason the degree of p in the numerator of the stabilizer rational-
fractional function is equal to or less than the degree of p in the denominator.
In our nomenclature, we may thus write :

n,my. (4.55)

From (4.2) and (4.55) it follows that the degree of the self-operator of
the stabilized section must not exceed 2.

We now return to equation (4.7) which describes the j-th controlled
variable of the structure shown in Figure 4.1. Let each subsystem be
made up of aperiodic and amplifying elements. Condition (4.2) is satisfied
in the following two cases: either the self-operators have the form

R(»Q(»=(1—+ T.0(4Ty D)

or, if one of the time constants is zero, we have a general self-operator
of the form

R/(p)Qi(p)=(1+T.p)
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In the former case
n —m;=0,
and in the latter it is permissible that
n—m=1,

Let us consider the first of the two cases. Equation {4.7) takes the form

[Di (p) [(1 +T. o (14T, P EVF (p)+ K: « Fu(p) BT‘p]+

+K, .« K, dchml (P)] Yi(0)+ KioFim (P)g:‘.ll"ik DY, (p)+
kel
+({+Tp (14 Ter)Fim(p)k;lam ", (p+
Rl
+Ki « Fui(P) X 0 ()Y 4 (p) =
hEi
= Ki!oxFim r ’gl Fie (DY bret (D) + Ky iuF i (D) Vel )+
Roki
F AT D O+Ti00) Fim (DY (P)+ K, o Fun (D), (p). (4.56)

Dividing (4.56) by K:. and assuming a sufficiently large Ki «, we put p——=m,

Kl st
and write

(D (P lm; V4T, ) (1 + T p) F i (p) €4 + F,, (p) €57] -

+K1dchlm(p)} YD)+ K, wog Fim (P)kgl rie (0)Y, (p)+
ki
+m (0 + T, p) (14T, p)Fp (P)kgl e (DY (2) 4
Reii
+F1n(P)k§ 0 (P)Y (P =K, aegFim (P)Y 1t (D)
Py

+ K wegFim (P)é’m(ﬂ)ykmr(.ﬂ)‘F
Rki :
+m(147T,.p(14 TP Fin(P) s (B)+Fia (D). (p). (4.57)

We can now find the matrix equation of the output vector as a function of
the small parameter m. Putting

m(1+T,:p) (1 +T,P) Fri (p) D, (p) € = ma, (p),

D, (p)F ., (D) €7 = b, (p), (4.58)
M +Top) AT, p) Fin (p) =me, (p),
we rewrite (4.57) in the form

[ma, (p)+ b, (p)+ K, agFim (DY, (D) +
+ K seg Fim (P) kg‘{ rie (PYY ¢ (p)+me, (‘D)k§1 G (P)Y ,(p)+

Py Pry]
+Fm(P)k§l (DY, (A=K, aeg Fim (PYY 1 o (D) -+
Py
+K, degFlm(p)kgl T (DY 4o (D) +
oy’
+me (D (P +Fra(p) (P G=1,2, ..., n). (4.59)
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The matrix form of equation (4.59) is

Ay:KdegFm),x-e{+BYref+NF' (4'60)
H
ere ma, () -+ by () + e Ky g Fam (9) Fin+
+ K, deg Fim (P) -+ {me, (p)+ Fra(P)) an
A= Kjoeg Fjm(P)rp+ oo Kjteg Fim (PYja+ (4.61)
+[mej () + Fin(p) oy (P)] +[mej (D) + Fin(P)lojn | '
Ko geg Frm (P) rm - e map (p)+ by (p)+
+ [meq (P)~+ Fpu (P)] 0y +Kndeanm ()
0 Kideg () Fim(Pyri2(p) ... K, deg Fim () 112 (P) ll
B = K1aegFam () ras (2) 0 «++ Kadeg Fam (P) r2n (P) | (4.62)
chanm(p)"ul(P) e . 0 I
mey (p)+ Fip () 0 0
N= 0 mes (2)+ Fan 9 ... 0 (4.63)
0 ) oo 0 mc, (p)+ Fun (p)
From (4.60),
Y = A7 [K s Fn¥ros + BY,y + NF). (4.64)

Consider the degenerate vector equation. Since condition (4.2) is
satisfied, we assume that the auxiliary equation of second kind meets
the stability requirements and thus obtain the degenerate case from (4.64)
putting m=0. From (4.64), (4.63), (4.62), and (4.61) we have

Yoeg = Ao {Koeg FuYeer + BYre+ Nuey F, (4.65)
where
b+ Ky degFim Kideg Fimriat-Fintus « o - Kideg Fim? in+-Figtin
Agg=| LI (4.66)
Kp deg Frmr mid-F antm eosbn -t Kndeg Frm
Fi, O 0
Nog=|0  Fun-o 0 (4.67)
0 0 Fu

The transpose of (4.66) is

b+ K geg Fim K aeg Famra + Fanar -« Kn aeg Frmtnt + Funtim

(4.68)

K, deg FimPin 4+ Fin®in oo see bn+Kndeann

The elements of A%, are found from (4.68), Inserting the respective
expressions for the matrices in (4.65) and multiplying, we obtain

Ay deg — A deg coe (_1)l+” A deg

1
Vig=70 0 4pag (V" Apaeg oo (14" Ajrag | X

D Ay g e e Anpagg
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KisFimYVicet+ Ky degFimria¥eres + oo 4 Kigeg Fimf1n¥ e+ Finfi
Ky deg FamraYiret+ K deg FamYaiei+ + oo 4 Kadeg Fam2nYnret+ Fanfa

XS T s T T =
K teg Frmfm Y1 et + oo+ Kudeg FamYnrert Fanfn
n
Ay deg <K|degFlm Z rliylre(+Flnfl)+
i=1
n
cee (=R A, deg (Kn deg Frm 2 rat¥ et anfn>
i=1
n
1 =1+ 4 deg <K| seg Fim ) rllylruf+Flnfl>+
=3 i=1

n
eee +(_1)‘+” Ajn deg <Kndeg Fom 2 rnlyixef+Flznfn>
i=1

(_1)"+‘ Ap deg (Kl deg'Flm Zrllylrcf"*' Flllfl)+ e
n
oo+ ApKnaeg Fum(E rai¥ i+ F/mfn)
i=1

(everywhere r;=1),

whence follows the degenerate equation for the j-th controlled variable:

1 n
Yj=x2(—1)j+lAﬁ deg [Ki ceghim

i=1

rioY arert F,,,f,]- (4.69)

P

Comparison of (4.69), (4.50), and (4.18) shows that these equations are
identical. They all have the same structure, differing only in the numerical
values of A, 4;;, and other coefficients., The expression for the full value
of Y; (nondegenerate) is obviously of the same form as (4.69), with the
difference that its components include coefficients that depend on m. Any
of the controlled variables can be found from (4.69). ‘

Let us consider the properties of the degenerate equation for the first
controlled variable in a plant- and transducer-coupled three-variable
system. From (4.69) for n=3 we have

1
Yl = Ts [All deg [Kl deg Flm (ercf+rl2y2rc(+rlayarcf)+Flnf1] -

— Ay deg (K, dengZm (raaY vt Yo rertrost seed) =+ Faafol -
+ A deg K3 deg Fam (ralY 1ot Mol 20+ ¥ aer) + Faafa) | (4.70)

Writing out the expressions entering (4.70), we have

b+ K degFlm K, degFlm’w'l'Fman K, degFlm’xz+F1na13
Ay =| Kagey Famra + Fantizy b2+ Kz gegFam Kz geg Famras+ Fagss |, (4.71)

Ksacg Famrar -+ Fantar  Kadgeg Famaa+ Fon®sa b3 Ks deg Fsm

A= by + K gegFam K, degFam’32+F3naaz
W Ks gegFam?as+ Fantes b3+ Ks aeg Fam ’

A __I Kideg Fuimriz+ Fintis  Ksgeg Famlsa+ Fanttaz (4.72)
271Ky geg Frmris+ Fiatis b5+ K deg Fan ' :

A = K, aeg Fimr12 -+ Fratus b2+K2degF2m
BTUK, deg Fimria+ Fints  Kageg Famraa+ Fantts 1°
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The first structural conclusion which obtains from the general equation
for the j-th variable as determined via the degenerate equation (4.69), and
which is likewise applicable to any particular case of a degenerate system,
is the following: a degenerate system of the given structure is characterized
by a multicoupled dynamics.

The coupling between the controlled variables in this case is determined
by the properties of the controlled plant (the coefficients as) and the
additional interconnections artificially introduced into the system (the
coefficients ri). As regards transducer coupling, it is artificial and is
thus specified by the particular features of the technical problem at hand;
the contribution from this coupling to system dynamics should thus be
elucidated for each individual case separately. Note that transducer
coupling is introduced to ensure a certain resultant variation of all the
controlled coordinates as a function of variation of each individual
coordinate. This interrelationship ensues primarily from the fact that
a change in any controlled variable modifies the setting for all the other
controlled variables. However, as is clear from the expressions for A,
system stability requirements should be kept in mind in choosing ru,
since the characteristic equation A= 0 depends on ri.

Let us consider three different cases for n=3, specifically (1) rin=0,
ik 9&0, (2) ' #=0, a,-h=0, and (3) rin %+ 0, Oin +#0,

Case 1, fik=0, Olip +0,

This case corresponds to an ordinary plant-coupled multivariable
system. From (4.70) we have

1, !
y1='—A‘;Au KldegFlmylrcf+Flnf1)—Al2 K2degF2mY2rc(+

+ F‘.’nf?) + Al’3 (KS deg Famya rcf+ F3nf3)’ (4 '7 3)
where
, b1+ Kraeg Fim  Fiatiz Fiats
Az =| Fa0y b2+ K2 qeg Fam  Fantas ) (4 -74)
Fanas Fantg, b3+ K3 geg Fam
¢ | &+ KoegFom  Fanon l
Au= Fanftay b3+K3degF3m ’ (4'75)
o | Fiaa Faptts, 1
An= Fanttsr b3+ Ky deg Fms " (4.757)
and
v A Futiz bt Ka g Fam "
Ala*' Fratis  Fapog; ' (4.75 )
The closed-loop transfer function (not generalized, so that fi=0) is
, ' Yo
Y (p) A (D) Ky geg Frm (P)— A12(P) Kyjgeq Fom (P) yz—:g,;—'f‘
K(P) — — - ire;
Y et (P) 8;(p)
4 YS ref(p)
+A13(P)KaaegFam(P) Y it (7) ) (4.76)
85(p)
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Let us find the expression of the D-decomposition curve for the gain
factor Kis,. The determinant A is not affected by interchanging its rows
and columns. This transposition will simplify further manipulations,
and we therefore write the determinant A’ in the form

b+ Ky gegFim Fanoim Fanoy
Ay =] Fia02 bz"‘l"szeg Fam  Fagug . (4-77)
Fipais Fantlzs b+ Ks geg Fam

Expanding (4.77) in elements of the first row and making use of (4.75),
we obtain for the characteristic equation of the system

[81(2)+ K1aeg Fim (D)) At (D) — Fzq (p) e A1z (p) <+ Fan (p)an Ats(p)] =0,

whence follows an equation of the D-decomposition curve for the gain K eq
of the first-loop degenerate equation:

AL (P) b () F Fi (P) 031413 (P) — Fpyy (P) 1y ALy (p)

K Y .
Kiaey (P) @ A () (p = jo). (4.78)

Dividing the numerator and the denominator of (4.76) by Fi.(p) Au{(p),
we find

Yi(p)  Kiseg +N(p)+M(p)

KV =v, i = 0 '
where
N Kygop A1 () YM:Z)) Fom (P)
(= A, (P) Fip (D) ' (4.79)

Fsm (p) A)a (») ys“:zg

M(P) KSdeg Flm ) All (P)

Au ()b, (F)""Fz,, (») %11412 (P)""Fan (») ‘131'413(17)
*(p) =K d°5+ Fim(p) A (D)

Equation (4.79) fully specifies the dynamic properties of a three-variable
degenerate system. A similar expression can be obtained for a degenerate
system of n plant-coupled variables. By analogy with (4.79), we have
for the n-variable case

__1yR+! ka(p) Ykrel‘(p)
K:aeg*‘g( D A D iy T

@ __ k£l
Ky(p) = 8 — s o . (4.80)

where

by () Ay () + 2 (=1 Fpon () A (0)

_ )
, _ 4.81
Kl deg — Fim (P) Ay (P) ( )
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Equation (4.81) is the equation of the D-decomposition curve for the
gain factor Ki«,; of a degenerate n-variable system.

In (4.80) and (4.81), A}, (p) is found from a determinant of degree n'as
previously in the particular case of a third-degree equation.

Let us consider expression (4.79) in more detail. For uncoupled
controlled variables,

an=0

and it follows from (4.75) that
A]I2=A;3=O.

Equation (4.79) thus takes the form

Kp)=—""1m" (4.82)

The denominator in (4.82) is a sum of Ki4q plus the equation of the
D-decomposition curve for Kju.,. The numerator is K., alone. We thus
see that the D-decomposition curve fully describes the dynamic properties
of the system in this case [39/.

Comparison of equations (4.79) and (4.82) shows that plant coupling
always has a substantial influence on the dynamics of each subsystem.

In the general case, the effect introduced by coupling may be advantageous
(if coupling improves the dynamic properties of the given subsystem) or
disadvantageous (when the dynamic properties deteriorate due to coupling).

From the general equation of the transfer function of an n-variable
system (equation (4.80)) we see that the dynamics of the i-th subsystem
cannot be determined from the D-decomposition curve alone, The D-
decomposition curve should be supplemented in general by an auxiliary
curve, the system dynamics being obtained from these two curves jointly.
As an example, we shall calculate the fundamental dynamic properties
of a two-variable system.

From (4.80) we have for the first controlled variable ( n=2)

Fom(P) Ap(p) Yy,6(p)
. 1deg =™ 7
Y, (p) Fim (£) A (p) Y es(p)
Kiwg P)=y7-1n= : - . 4.83
e () Viree () b (P) Ay () — Fap (P) Ayp (P) 0y ( )

Fin (9) Ay (P)

1 deg

Here
An=0b+K aegFom == D3 (P) F2n ()~ K2 deg Fom (D), (4.84)
_A;2=—F2n (p)an: ’
Substituting (4.84) in (4.83) we find
y K 4 e — gﬁm :P) I;\l,nul)z . gzrcf(p)
_ N _ ¢ 1m(p) N(p 1eef (P)
Ko D=7 0= o T D0V G FulaFupe ®  (4:85)
ldeg Fim(p)N (p) Fim (p) N (p)
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where
N (p)==Dy(p) Fon (P} + Ky 4oy Fom (p)-

We first construct the D-decomposition curve for K4y assuming uncoupled
variables. Thus,

— D, (p) Fa )
Kldcg=“‘%(1;)(m, p=jo. (4.886)

We have previously assumed that the stabilized section is structurally
representable as one or two aperiodic elements in series. We thus choose
the following transfer function for the stabilizer:

Fin(p) __up - 4.87
Fim(p) I+1p° ( )

The plant transfer functions for the first and second controlled variables
are chosen from
Di(p)=ap’+a;p?+a;p+ay, (4.88)
D, (p)=a;p*+ap* +a;p+af
and

Fon (P) — _ TP
Fom (p) T+p’

We adopt the following (arbitrary) numerical values of the coefficients:

17,=0.3 sec, 1,=0.2 sec,
a;=0.001, /=01, g=1, a;=1,
a,=0.0001, a;==0.001, a;=0.1, aj=0.1,
Ky ey =5, =05, Y ((p)=73.4(0)

Figure 4.3 {(curve a) is the D-decomposition curve in the Kiag plane
plotted from equation (4.86). As is shown in § 3.7, the system dynamics
in this case can be obtained directly from the D-decomposition curve,.

We now plot the D-decomposition curve and the auxiliary curve making
use of (4.85). The equation of the D-decomposition curve in this case is

= __ Di®Fin () [Dy (p) Fan (pY+ K, degF2m (P)] .
Kiwe =—F o0 P O F KraegFem ]~ P=10)- (4.89)

The equation of the auxiliary curve is

F
K, deg — Ff:: g; Fin (p) oyq

WiD)=promyrs (P)+ Rogeg Fom (B)

(4.90)

Curve b in Figure 4.3 is the D-decomposition curve constructed from
(4.89). The auxiliary curve in our particular case has virtually no effect
Fam (p) ‘
Fim ()
entire relevant frequency range, the numerator of (4.90) is close to Kigeg.

on the system dynamics. Indeed, since is close to unity in the
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The D-decomposition curve thus provides information not only on system
stability but also on the fundamental dynamic characteristics.

Im Kldeg

7 T

N

i

FIGURE 4.3. D-decomposition curve.

The D-decomposition curves suggest the following conclusions.

1. The region of stability of an isolated system is less than that of
a coupled system (the intersection points of curves a and b in Figure 4.3
are not shown).

2. The positive-response bandwidth for the given K; value in a coupled
system is substantially greater than that of an isolated system, whence it
follows that the dynamic properties of a coupled system are substantially
better than those of an isolated system.

3. It is clear from the preceding that in the case at hand the System
should not be made noninteracting. This conclusion, however, is by no
means applicable to other numerical values of the parameters.

The D-decomposition curves are tabulated numerically in Tables 4.1
and 4.2 for the two cases being considered. We see that Kj 4 must not be
ignored In constructing the D-decomposition curve for K., we put
Kyey=5. A change in this parameter substantially modifies the trend of
the curve (see Tables 4.1 and 4.2). The D-decomposition curves should
therefore be constructed for all K, the appropriate value of K, being
picked out in accordance with the problem at hand.

The choice of the parameters may also substantially influence the
auxiliary curve, as is clearly evident from Table 4.3. We see that in
our case the auxiliary curve can be reduced to a single point, Ky4,. The
tabulated data also show to what extent the auxiliary curve can be mani-
pulated by an appropriate choice of system parameters.

Case 2, r;+#0. q,,=0.

First let us write the transfer function. In equation (4.70) we collect
the terms which contain the factors Yi.;, Yy, Ys.« Moreover, seeing
that ai.=0, we put A, A, and A3 for the respective cofactors and write
A; for the system determinant.
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TABLE 4.1

D, (p) Fm (p)

Kisee ==

o | ootp41 | @x0ap | @41 @xp &n 0.3p 0.3p+1 ;:"m(::) f”i&’ Kocg

o |1/ 0 1e/% 0 1/ 0 167 0 0 0

1|1 019 | 1016/ | 1.01e/%° | 1.35¢/4° | 0.36/%° | 1.05¢77" | 0.286¢/7°[ 0.385¢/122°| 0.385¢= /5¢°

2 | 185 102515 | 1026717 | 2.040/190° | 18157 | 0,66/ | 1.17567%1°| 0.51075° | 0.992/1%%| 0.9920~ /%

3 §1/% 03¢/ | 1.04e/17° | 312:/'7° [ 309%° | 0.02/%" | 1.350/9%° | 0.667¢78° |0 /136° | gp—H°

4 1125 {04015 | 1.076/7° | 42807117 | 407%° 1.26/%° | 1.57¢/5%° | 0.763¢7%°| 3,05¢/1%8° | 3.050—/42°

5 {1/ 05¢/%" | 1.167275° | 550/1175°| 5,150/1%° | 15/%° | 1.81/56° | 0.836/%° [ 4.280/12° | 4.980— /%"

7 | 1% 076 | 1.19¢/%° | 8.33071%°| 7.70/12° | 2.10/%° | 2.350/5° | 0.893¢/%5°| 6.87¢714° | 6.87¢— /%

9 | 1/% 0967 | 1206/ 116611 (10.96/1%° [2707%° | 20076 | 0.93¢/2° 10,16/ (10,16~ /2°
10 | 1016755 | 1.016/%55°| 1350/ |13.50/138° (12701195 | 3,79%° | 317677 | 0.95¢/1%° |12.06¢/153° [12.060 /27
12 | 1.015/%°) 1200795 14915 (17.850/14%° [1709192° | 36279 | 3.750/™° | 0.96e/1%° |16.3¢/15%° (16.3¢— /22°
15 | 102675 | 15375 | 1.76/%%° 05501155 [0466/15%° | 45079 | 4.6e/75° | 0.98¢/12° |24.16/16% [o4.1¢= /167
20 | 103271 | 2.062/101° | 0,10/75° |49,/1635° [41,/16%° 6e/9° 6.1e/81° 0.9830/%° (40.207172° [40.90— /8°
TABLE 4.2

_ D1 (9) R 1D, (1) Fun (1) + K g Fam ()= Fan (9) Pin (p) s
Kideg =— D P P (P F Ko aes Fon () —Fu (P
_ . Denomi{ —

ol 2 | o | Fuue \ELGN BG [0, (3 oKy Rt | g5y o Fra(Prag | 0T i | o
0]1e/0°  |0.1070° 0 0 [1e/0° [} 5¢/0° 0 0 5¢/0° 0 50/0°

1| 1.350749°| 0.135¢/49° 10,3856 —J58°10.2790%)1 03¢ /11° | 0.0276718%° | 5,15¢/11° | 0,12790° | 0,10 —190° | 5.196/10°| 0.0786—768%] 5.150711°
2 | 1.816/71°] 0.181e/71° 0.920¢— /50°|0.42790°)1.0850/21-5°| 0.07222/161°15.425021.5° 0.20790° | 000~ J90° | 5.95¢720°| 0.9e—J40° | 5.370722°
3| 3/8° [032/88°  Joe—JM°  0.6ei90%1.1750/31% | 0.18/178° | 5.875¢/31° | 0367%0° | 0,30~ 190° | 5.62728°| 9 3550—/42°] 5.750731°
4479 (042798 Ja050—742° |0.82790%1,200741° | 0.3267188° | 6.45e/41° | 0.46/90° | 0.4e—190° | 5.00740° | 3 518,—/42%| 6.20743°
5 [5.156/108°] 0,515¢7108° |a.08, = J38° [1,790° [1.426/45° | 0,5150198° | 7,10/45° | 05e190° | 0.50-790° | 6.4¢/43° | 5.670—741° | 670746°
7 [7.76J120° | 0.777120° [g,87e = J34° [1,40790°(1,73¢J55° | 1,0807210° | 8,650755° | 0,76790° | 07 ~790° | 7.10755° | 7.070—749° | 7.65¢]58°
9 [10.90130%) 1,006 /130° 110,16~ 729° 11.80790°(2.07760° | 1.966/220° |10.35¢/60° | 0.96J%0° | 0.9¢—19° | 7.750762%| 103, —S41° | g.53065°
10 12.76J135°) 1,2767135° h19.06e—/27"(0e/9° [0,23063° | 9,54eJ225° |11.150/83° | 1690° | 10=J90° | 775606412 565 —J41° | g 70167
12 (1771420 | 1.7J192° [163e— /22 [0.46790°12.626/67° | 4.080/232° [13.10767° | 120990° | 1.90—%0° | 5.26J70% [17.00,—j42° | 9.050173°
15 [24.60152°) 2,460 7152° o410~ J16° [30790° [3.476J72° | 7,376/242° [15.850/72° | 1.50790° | 1.50-J90° | 7,30077° | 3.3,—~743° | g.7,80°
20 (4167163 1 4007163° 14000 =B [10790° [410J76°  |16.40/253°  [205e/76° | 0090° | 9g=190° | 4,786° |3 80— 7440 | 4 ges88°
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TABLE 4.3

U] an

Fam (p)

Kigeg — Fimp) Fap (p)as

K ss B, 5y Fos (91 Kas Fom
Fo (P F g [umeraten -] @ (1002
® (] Famt®) | Fip(® P | T Pogl % - nator o | OF
0 50 16/ 1/ 105 0 0 5e1° 5070 1/ | 5200
1 50  1.03¢/M° | 1050717 J0.98e= /%" | 0.10~ 7% [0.098¢ /%" | 5.1/1° | 5.120/1° | 1) | 525
2 50  [1.085e775°) 1.1756/%1°10.922¢195°| 0.00= %" 10,1840~ /10" 5.32¢/19° | 5,250/%° | 1.01/1° | 5.202071°
3 50 11175673 | 1.35¢/%%° 10.872e/1°] 0.3¢=7%° [0.2610~7100°| 56012 | 562078 | 1071° | 527"
4 50 12967 | 1.57¢7%° 10.822¢77% | 0.4~ /%" [0.329 /%" | 596/4° | 59679 | 101° | 5.907°
5 50  (1.42e/%° | 1.81e/%° 10.785¢~/11°| 0.5e=7%° J0.392e= /101 6.4eS47° | 6.467%° | 107 | 5247
7 50 173675 | 2.3507%° 107367 | 0.7277%° [0.5140~ 7% | 7207%° | 7.1/5° | 101677 | 520207
9 50  [207e7%° | 2.9¢/%° |0.7150=7% | 0.9e=7%° |0.642e=7%° | 7.8507%° | 7.75/6%° | 1.01¢/2° | 5.202¢/1°
10 50  [2.23e7%° | 317/ [0.703e=/% | 1e=7%° [0.703¢— /%" | 8¢/65° 7.75¢/%° | 1.03¢/7° | 5.2060/°
The determinant is given by
b+ KisegFim KidegFimria  Kiaeg Fimnis
Az =| Kageg Femrn b2+ Kz gegFam K3 degFamra H (4 .91)
K3 aeg Famrs K3 deg Famra bs + Ky aeg Fam
to find Apwe first write the transpose
) b +K, degFim Kz deg Famra: K, deg Famla1
A =| KisegFimria  ba +Ks geFam K segFamrsa (4.92)
KidegFimris  KadegFamrss b3+ Ks aeg Fom
whence
" bs + Kz degFom  Ki gegFsmras
An= Kz gegFomras b+ KiaegFam (4.93)
” Ky geg Fimri2 KadegFSm"sn '
A"_l Ki aesFuntia b+ Ky aogFom |" (4.93")
" K, degFlmrIS b +K2degF2m l 1"
Ala_l Kideg Fimris KaaegFamras  |° (4.93")
Equation (4.70) reduces to
1 ” " ”
Vi=— {[AnK: segFim — A1k seg Fomras + AtsGs aeg Famran] Vi +
'3
+ [ A1 deg Fimr 12 — A12K ooy Fom 4 AlaKs aeg Famrso] Vo er+
+[ ALK seg Fimr1s — A1z degFamran+ AtsK aeg Fam]Y 3t
+ AnFunfr — AwuFonfo+ AunFanfal. (4.94)
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The transfer function (ignoring the load) is written as

Y, (p) _ A;/IKI deg Flm (P)— A;I2K2 degFZm (p)roy + A;’3K3 deg Fam (2) ryy

Yig®) By
+ ALK gog Fim (P) 19— 41K, deg”F2m () + AsKs geg Far (P) 3 Your(n)
Ay Yier (D)
4 AK, ey Fim (P) i3 — Ay deg”FQm (P) o3+ ALK, degFam (P)  Yares (P) . (4.95)
A, Yiret(p)

Transposing the determinant (4.91) and expanding the transpose in
elements of the first row, we find

Az = (b1 + Kaeg Fim) Alt — K2 seg Femran Atz ++ K aeg Famrs A, (4.96)

The elements of the first columns in Aj; and Aj; are multiplied by K.
Taking this factor outside the determinant, we write

Ap=Kiughr, A=K izhs. (4.97)

Making use of (4.96) and (4.97), we write the transfer function (4.95)
in the form

Yi(p)__ Koy [4110P) Fim (P) — Ko s P ) inrg (D) K g Pon () rr i ()]
Yiret (0) 6,43 (PY F Ky geg [Fim (P) ALy (P) — K3 geg Fam (PY Py Apa (P) 4>

>+ Ky egFanlP) ra1 Ay (P)]

Yaer(p) _ Kiaeg 1A () Fiim (9) rig—Kp seg Fam (P) Aro (9)HK; aeg Fam (P i (9] |
Yiet(B) 7 6,40 (D) 4 K1 aeg {Fim () A1 (0) — Kpaeg Fom (9) Py Arp () + >

>+ K degFam (P radys (P)]

Yseer(p)  Ki aeg [411 (P) Fim () F13— Ky eg Fom (P) rasia (P) + Ai3 (P) Ky aeg Fam (P)]_ (4.98)
Vieet (P) B AL (P F Ky deg [Fim (2) AL (P) — Ky aeg Fam (P) rp A (P) + >

>+ Kz degFam (P) ra1éia (P)]

Dividing the numerator and the denominator of (4.98) by

Fin(p) Al (P) — K2 segFom (P) ranAiz (p) + K3 aeg Fam (P) raAiz(p)
and putting p=jo, we find

K Ll K Kl
Vige) K aeg + 'des g, Varer (J0) Y42 Qs Vigr(Je)
Vier 10) — Kygeg + Dk, (J0) 7 Ky g + Di, (J0) V1ret(j@) " K gep + Dg, (J0) Vypes (o)’

(4.99)

where
Py = A1 (jo) Fim (&) 112 — K2 4o Fam (j0) Ar (jo) +

. ‘ + K3 teg Fam (o) Arz (jo) ras,
Q1= Fin (j0) An (j©) — K3 teg Fam (j©) ranAr (jo) -

, + K3 teg Fam (j0) rizdn (jo,.
Py = Ay (jo) Fim (Jo) ria— K2 aeg Fom (j0) rosAie (jo) -+

+K3 deg FSm (](D) A13 (jm)'
Q2= Fim (jo) A1 (jo) — Kz aeg Fam (jo) rnAsz (jo) +

+£K deg Fym (J0) rgAy; (jo).
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Here Dk, (jo) is the equation of the D -decomposition curve for Ky, with
its sign reversed, defined by the equation

by (jo) Ay (Jo)
Fim (@) Af) (J0) — Ky ge For (j0) ry A () +
+ K degFam (jo) ry A3 (jo)

(4.100)

Kl deg ==

The first term in the right-hand side of (4.99) determines the dynamic
properties of an isolated servosystem. These properties can be found
from the D-decomposition curve (4.100). Subsequent terms specify the
influence of other servosystems on the one being considered. Since the
system is linear, the effect of extraneous servosystems can be found by
superposition. All terms in the right-hand side of (4.99) have a common
denominator, and the D-decomposition curve Dy (jw) is thus applicable
to all the components., It therefore suffices to perform geometrical
addition of the auxiliary curves only.

- In the general case of an n-dimensional servosystem, the dynamics of
the i-th servo is found from the general equation

Y (Jo) —_— Kl deg S 3 Yk rcf(]"))
Yire((j“)) - Ki deg + DKI (Jo) [l + ’EIHAM (j(l))rlk] eref(jm) ’ (4.101)

The functions E[Au(jo)ri] are obtained as previously for a three-
dimensional servo. The expression in brackets in (4.101) is the auxiliary
curve for the general case of an a-dimensional servosystem. Having
constructed the D-decomposition curve for K., and the auxiliary curve,
we can choose the appropriate gain K4, which ensures system stability
and desired quality.

Some general conclusions concerning the dynamics of this class of
structures can be drawn from (4.99) and (4.101).

1. The auxiliary curve, representing the contribution from extraneous
gervosystems, may raise the crossover frequency of a closed-loop i-th
servo at constant gain. This is obvious from Figure 4.4, where oy is the
crossover frequency of gain in an uncoupled system, wx» the crossover
frequency for the same gain K., in a system with the auxiliary curve
shown in the figure. Hence follows a very important conclusion: the
dynamic properties of each i-th servo in a multidimensional servosystem
can be better than those of an isolated i-th servo. ‘

Im ”ideg

Re’(i

deg

Wz

FIGURE 4.4, Estimating the crossover frequency.
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2. The dynamic properties of each component servo can be adjusted
by an appropriate choice of variation of the reference values Yt We
see from (4.101) that the auxiliary curve of the i-th servo is substantially
dependent on the variation of Y, of all the other servos. This in a sense
provides a sort of control coupling, and in certain cases a sequence of
Y4 values can be programmed in advance to ensure the desired quality
characteristics of the i-th controlled variable.

As an example, we calculate a two-dimensional servosystem, which
illustrates the procedure and also validates the above conclusions.

From (4.99) we have for the transfer function of a two-dimensional system

AFrg (P) rp— Ky degFam () Ay (p)

K e " "
WO Ky ROV A0 K Fn D) A @) Yyeetp)
Vet () 7 Ky deg T Dk, (P) K, deg + Dy, (p) N
Here

An= b2+ Ks o Fam,
A;ﬂ == Kl deg Flmrl'h
D, (p) = Dy (p) Fin (2) (51 (P) + K3 aeg Fam ()]
% P = B I 6 (D F Kz aeg Fam DN~ Ko ey Fen (D raF i (P 7

p=jo
by=a,pP4-a,p*+a,p +a;,
by=a,p*+ap*+a,p+a;
ay=0.001, a@;=0.1, a,=1, q,=1,
a;=0.0001, a;=0.001, a;=0.1, a,=0.1,
rp=ry =02,
Qo ==y =0.5.

Figure 4.5 plots (a) the D-decomposition curve for rp=ry=02, (b) the
D-decomposition curve for rp=ry=05. Figure 4.6 shows separately the
auxiliary curves for r;y=0.2 and ry,=0.5.

‘ Im ’{ideg

FIGURE 4.5. D-decomposition curve.
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The various curves indicate that as the degree of coupling increases,
the D-decomposition curve becomes more favorable: the range of K,
values corresponding to a stable system increases, and the crossover
frequency for the same K4, is higher. Furthermore, in a coupled system,
the auxiliary curve can be modified by appropriately changing Yi.s.

Im”ideg

as

0 Re/

Cdeg
FIGURE 4.6. Aucxiliary curves:
(a) r,=0.2, (b) r,; =0.5.

Case 3. The general case ru +0 and ai #0,

System calculations and choice of parameters in accordance with
quality specifications can be divided into two separate stages, putting
first ri +0, ai=0 and then ry=0, ax+*0, and adding the results. The
parameters are chosen so as to ensure the desired system dynamics
with a view to the task at hand (designing a servosystem, stabilizing, etc.).

(b) INTEGRAL SYSTEMS

We shall establish how the expression for the j-th controlled variable
changes when integrating control is introduced in each loop and derive
working formulas for system analysis and choice of fundamental parameters,

We have previously obtained an expression for the j-th controlled
variable in an integral multivariable system. This expression is

Y;(p= % { (—1P* Ay (p) [Kpto(Fmp (P) E roe¥ ke (D) +

k=1

+ @)+ KK & (9) [, (2]} (4.50)
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As in the case of proportional systems, we assume that the configuration
remains structurally stable as the gain increases indefinitely. In other
words, condition (4.2) is again satisfied. Stabilization is provided by
passive elements meeting condition (4.55).

We now derive an equation for the j-th controlled variable assummg
sufficiently large gain for the stabilized section. Dividing (4.42) by K,

and putting

ma (p P)+b (P)Y (P +K1dchmt(p)Yl(p)

+ K aog Fmi (P) ? rlkyk (p)+mc (p) 2 o, Ve (p)+
ik il

+ Kig: (p) g Y 1 (0)= K ey F i (P)Y e (P) +
REl

+K; dchml () Erlkykrf(p +mic (p)fi(p)+Kigi(p)fi (p)

ﬁi
(z=1 2,

Let the auxiliary equation (which may be of first, second, or third kind
in this case) satisfy the stability conditions., It thus suffices to ensure
stability of the degenerate equation and to choose its parameters in
compiiance with system quality specifications. The point is, that in a
stable system with sufficiently large K;., the quality of the entire system
is completely determined by the degenerate equation.

The set of degenerate equations is derived from (4.102) by putting m;= 0.
We have

=m, we obtain (making use of nomenclature (4.41))

n Kideg=[[<<1“:)- » (4.102)

16; (P)+Kideg Foi (p)]yl(p)+Kldcg le(p)k_:zlrlkyk (4
kel
+ Kig: (p) kglalkyk (P)=K 4eg Fr1 (P} Y 11 () +
Rt
+ Koo Fim (P) ; rie (DY ke (P)+ Kigi () F1(P)

G=1,27"., n). (4.103)

In matrix form equations (4.103) are written as follows:

AY =Ko Frp¥ ot + BY .+ NF, (4.104)
whence
Y = A7 |K eyl s+ BY o+ NF}, (4.105)
where
h(p-+ Kigeg Fim(PY ria+ o Ki tegFrat (P) P1p+
+ K. deg Fomr (P) + Kigi (p)ay, +Kigi (P,
Ky degFam (PYran 4+ b2 (p) + Ky deg Fmz (P) ran -+
A=l bKi@on A KeaegPma® o FKaa(P)ag, | - (4.106)
Knaeg Fam (p) rm + .er oo By (p)+
+ Kngn(p)am + Ks 4eg Frun (9}
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K geg Fms (P) 0 cee 0

KngFﬂ‘l= .. 0 PPN fa'digfm.z(.!’)' L. .0- S (4.107)
0 0 cor K gog Fma(p)
ylruf(P)
Yarer(P)
V=1 . (4.108)
Ynwer(p)
0 Riveg Emi (Y 11z oov Kigeg Pt (P) 11n
= || Kadeg Fm2 (P) rn 0 vor Kadeg Frua (p) ran 10
B=) Tt m O A e - (4.109)
Kndegan(P)’m see see 0
Kig(®) 0 e
N=|0 Kiga(p) ... O , (4.110)
and 0 Kngn ()
fi(p)
f2 (p)
F=j- (4.111)
fa(p)

The inverse A-! is obtained by the previously outlined method from the
transpose A;. Inserting for the matrices in (4.105) their expressions
(4.106) —(4.111) and multiplying, we find

n n
2] (—l)Hi Ay (K/ij I;:'l rieY et + KlE:fx)
= =
O
e P : (4.112)
n n
/2—}1 1+ 4, (K/ijkz_:l rieYewes+ Kngnfn>

where all ry=1.
Hence for the j-th controlled variable

Yj=‘l‘2(—‘1)j+iA/z (KiFmi Erik)/l-cfk+Kjgjfj)' (4.113)
i=1

k=1

The structure of (4.113) isidentical to that of the equation of the j-th
controlled variable in a proportional system. The only difference is in the
explicit expressions of the operators in (4.69) and (4.113). It is thus
unnecessary to repeat the previous manipulations described in detail for
proportional control systems. ‘Integral systems can now be investigated
and calculated using equation (4.80) with appropriate expressions inserted
for the operators from (4.113). /

As an example, we proceed with a calculation of a two-variable integral
control system. Here ag 0, ri=0; we thus start with working formula (4.83).
Here
Fom () A (0) Yoo (P)

Fim (P) A (P) Y 1 (P)
b (p) A1 (P) — Fiy (P) Apy (P) oy
Fim(pY Ay (p)

K, deg —

Kl deg= (4.83)

Kl deg +
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Remembering that we are dealing with an integral system, we will
determine the expressions for all the operators entering (4.83), For
simplicity a lagless system is assumed, and making use of nomenclature
(4.41) we obtain in the integrating case

b, =R, (p)pD;(p) F,y (p),
An =b2(P) + K2 ueg Fam (p) = Re (p) D2 (p) Frz (P)+ K2 deg Fom (D),

’
Anp=— Fa,ay.

Substituting in (4.83), we find

_Lp—N(p)
Ky g = 9 (p)

where
L (p)::Kl deg*

N ( )_,_Y Fam (P) . Fan (p) 0y . Yaeet (P)
D= Fin0) R D) o (P F Kr ag Fom @ Vv (2

— Ry (P) PD) (P) Fuy (P) — Fan (Jo) sz
V)= K ss T o) (R (5) s () P (5 ¥ Ka e Fom B

The equation of the D-decomposition curve for Koy is

B, o= R (Ja) D, (j8) Fyy (Jo) Jo — F1n (J0) 01 .
V98 T Fim (JO) [R2 (J) D3 (J6) F g (J0) J& + K acg Fom U0)

For the sake of simplicity we put

Rt (j(‘))=1v
Fim=1+41p,
F1n=11p'

The calculations are then continued as for a proportional control system.

§ 4.3. STRUCTURES WITH SEVERAL STABILIZERS

Stabilizers using passive elements have the obvious advantage that
technically their design and construction involve neither fundamental
nor practical difficulties. On the other hand, it is clear from the preceding
and from the very nature of the passive elements that

n—m <0,

so that the self-operator of the stabilized section of the loop cannot be of
degree higher than two.

It is shown in /38/ that in single-variable control systems a single
stabilizer, though possibly ensuring infinite-gain stability, is insufficient
for high-quality operation. This is so because the degenerate equation is
of a high degree and the dynamic properties of the system are inadequate.
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Systems of rational structure considered in /39/ possess infinite-gain
stability and an unlimited closed-loop positive-response bandwidth. In
cases when the initial single-loop system is described by an equation of
higher than fourth degree, the desired structure is generated by intro-
ducing several stabilizers using passive elements.

In this section we generalize the preceding results to the case of v
stabilizers in the system. Owing to the inclusion of numerous stabilizers,
the system now constitutes a multiloop structure in each controlled variable.

FIGURE 4.7. A multiloop subsystem.

Figure 4.7 is a block diagram of the layout for the i-th controlled
variable. In the derivation of the general equation we allow for coupling
through the plant and the measuring devices. By putting subsequently
rg= 0, we will obtain the equation of an ordinary plant-coupled multi-
variable system.

We assume that the v elements whose gain can be made sufficiently
large are stabilized; part of the measurement device, part of the controller,
and the plant are not stabilized. The set of equations describing the
behavior of the i~-th controlled variable in this system is the following.

The plant equation:

Dz(p)Y¢=K1l:Y;—glamyk—{-f,:l. (4.114)
ki

The equation of the unstabilized part of the controller:
R (p)Y i =wX,, (4.115)

The equations of the v stabilized elements in No. 1 configuration /39/:

v v
Ill[Niprml+KlpFnlp] X =pl-[thmeian- (4.116)
s =
The equation of the unstabilized part of the measurement device:
Q(p) Xy=9, [ylmf—yl +k§1”1k (Ykref_yk)]' (4.117)
Rk
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Eliminating ¥;, X, and X between (4.114), (4.115), (4.116), and (4.117),
we obtain after simple manipulations '

{R,- (0)D; () Q, (p)pI:[1 INio(P) Fnip (5) + KigFnip (p)] +
+ K [ KiFt ()} ¥4 R (1) Q1) T NP Py () -+
+KioFai ()] 3, oua¥ - T KiFois 3t =
R Rkl
= K T KioFip (P
+ Ko, T KiFi (9 2 ¥

kAL

+R,(p)Q;(p) ,)I=[1 [Nio(2) Frmip (9) 4+ KioFato ()] f1 (4.118)

Putting i=1, 2,..., we obtain the complete set of equations describing
this multivariable control system.

An ordinary plant-coupled multivariable system is obtained by putting
r=0in (4.118). Thus

{Ri () D, (p) Qi(p)‘l:]l [Nio (P) Fmto (P) + KipF nio(p)] +
+Kiui61}lKrolep (P)}yz+
+R,(p) Q‘(p)pl;[,[Nm(p)lep(P)+KlpFnlp(P)]kElamYp=

oy
hd
=K, pl:[l KipF1mp¥ 1 e+

+Ri(p)Q, (P)pl;[1 Nt (D) Fimp (p) + KipFuto (D)) f1- (4.119)

The following notation will be needed if we are to write (4.118) in matrix
form:

R (2) D1 (2) Qu () I IN1a(2) Pt )+ Koot () =, 2,
31 =a,(0)+ Ky [ s (2,
T1 Pt () =400
K, T Kio =K
R0 Qu(0) T N1 5) oty ()4 Koo (9] = 1 5

Equations (4.118) are thus rewritten as

a,(p)+K; wzHleo(P) Yi+b,(p) é oYy =
o=1

k=1
ki

=Kiall Fue @Y 1t-b:(0)f (=1, 2, ..., n). (4.120)
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The matrix form of (4.119) is thus

AY =K LY.+ BF, (4.121)
whence
Y = A7 [K, LY. + BF], (4.122)
where
ap, bty ... bay,
bo0y; @y ... by,
A= b.jﬂ./n ..... a}, "11;11; ’
bt cor Gy
Kitordi Vet b
Kellu=) - |,  BF=|.
KmmC.n LT ’;nf n

The inverse A-! is calculated as before,
Since equation (4.122) has the same form as equation (4.121), we can
directly write the equation for the j-th controlled variable:

Y/ (p) ='Z— 2 (_1)j+p A/P [Kpmr :k[lFmpk (p) Yprcf+ bp (P) pr "

p=1

Assuming that all V. (with the exception of p=j) are known numerical
values and that ¥; ,is the input, we obtain the following expression for the
transfer function for the j-th controlled variable (taking f,=10):

Y;(p) 1 d
Vi =7 Au(DK; H Fjs (D)4

n v
1
+ 57 2P A [K,, o LT o (2 YMJ =

by
l v
=K{Ajj (p);!_]l:Fm/kKjto:_"
1 n v
tva 21(—1>’+°A/.>Kp o ] Foot (2)Y: ] (4.123)
p= =
o)

This generalization can be interpreted as follows. Since the stabilizers
use passive elements where the degree of p in the numerator (n:) is invariably
less than or equal to the degree of p in the denominator (my), i.e., mi<m;,
the stabilized section in a system with a single stabilizer can be described
by a differential equation of not higher than second degree. Our generaliza-
tion lifts this essential restriction. It is proved that the stabilized section
can be described by a differential equation of any degree, provided that
not one but n stabilizers are introduced. The number of stabilizers n
depends on the degree of the equation describing the stabilized section.

If the degree of this equation is v, the minimum number of passive-element

stabilizers for this loop is n=%.
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Chapter Five

COMBINED MULTIVARIABLE CONTROL SYSTEMS

§ 5.1. INTRODUCTORY REMARKS

Combined multivariable control systems are automatic control systems
with plant and load coupling between the various controlled variables.
A1l loads act as disturbances on all controlled variables.

The present analysis of combined control systems is based on two
principles, the Watt —Polzunov principle (or the principle of control by
deviation) and the principle of load control.

A simple problem to be considered at the outset is the choice of rational
structure. In ordinary plant-coupled multivariable systems the choice
of structure reduces to the determination of stabilizer properties and
points of stabilizer connection to the network that meet certain quality
and functional specifications. In combined control systems one is
additionally concerned with the transducer through which disturbances
are introduced into the control loop and with the connection of its output
to the system.

Aside from the requirements for ordinary multivariable control systems,
we should consider certain invariance aspects of the structural properties
of these systems. Invariance is dealt with in a special chapter.

§ 5.2. TRANSFER FUNCTIONS

Figure 5.1 is a block diagram of a combined control system. No

restrictions are imposed on the elements. The stabilizer ?"‘l((’;)) is chosen
m

so that K.; may increase indefinitely. In general, itfollows from the
Kcl
Ri (p)
ni>m;, Ri(p) can be structurally partitioned and several stabilizers

introduced; this approach will not affect the fundamental results. For

. . Kei Fri (P) :
this reason the transfer functions AT and Foalp) 2T€ structurally of

results of Chapter Four that if ig such, that the stabilizer should have

very general character.
So as not to restrict the generality of our analysis, a section of the

loop with a transfer function Q,u(‘p) is left unstabilized. No restriction is

imposed on this transfer function at the present stage, but later on it will
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turn out that the parameters of the unstabilized element should be chosen
so that the degenerate equation remain stable as K.;—oe. The sum of all
load disturbances applied to the plant constitutes the input of this element,

The transfer function g"i((fz)) is unknown at this stage, and it is therefore
m

immaterial at what particular point of the main control loop the output of

the transducer 22 i delivered.
0.: (P)

n
L Binty
w=l

Fni (P)

Fmilp)

FIGURE 5.1. A combined control system.

Our problem is the following: given a certain quality criterion
or a certain desirable property of the combined control system,

choose the transfer function ee"j((‘;)) in compliance with the properties

of the section between the transducer output and the plant input,
where the load disturbances are applied. Once the sought property
of the transducer has been determined and its transfer function established,
the connection of the output can be found unambiguously.
The transfer function for the i-th controlled variable, according to

Figure 5.1, is

QU X,=w [Y;eu—yl—f’ g’:[l((f,)) Eﬁuz () fk]
k=1

or
Q) Ot () Xy |t Y000 (900 B0 V1 .
R(p)Yi=Kei[ Xi— £ y)] (5.1)
e [R:(p) Fri(p)+ Ko 1Fmi (p)]Y§=Kc;le » X, (5.2)
L [ PN TR (5.3)
&
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Eliminating X, ¥i between (5.1), (5.2), and (5.3), we find
Q. (P) 0 (P) [Ry (P) F i (P)+ Ko F i (D)) Y;=P'IKCIle () [(Yrefi_yl) 0, (D) 4+ 0,y (P)kg1 Bix (p) fk] ’

Y£=D—;<ﬁ’;’ri+§aik B3 — B ()]

and Py,
Qi(P 8y (D[R (p) Frus (P)+ Ko iF i ()] [‘DIK(Tmyl +2¢11k 2)Y, —Eﬂlk (p) fk] =
=1 =1
kol

= [me. 821 (D) =Y 87, () + 6, () Z Bir (2) ka 1Ko iy (D)
or k=t

[Qi(l’) 0 (DR (p) Frna (p) D, () +
+KeDi(p) Qi (P) 8y (D) Frar (p) + WK ;K Fony (p) 8 (D) Y, +

+ KiQ: () 8i (p) Ry (P) Frs(p) kgla”z »Y.,+
ket

+ KK eiF o (0) 80 (9) Q, (p)glan DY =
ki

= KK 1F iy (P) Oy (D) Vg + F ot (D) K, K, 8 (P)kgl Bin (D) fo +

“+ K Qi () 0 (P) Ry (P) F i (D) %ﬁm O f.+

+ KK 1Q, (p) Oy (p) Py (P)gl Bir (D) [ (5.4)
Taking I=1, 2,.., we obtain the complete set of equations for a combined

control system with interrelated variables. In order to write these equations
in matrix form, we put

Qi () 8i (D) Ry (P) Frny (9) Dy (D) =4 (),

D, (p) F i (P) 0 (9) Q, (p) 4+ 1K F 1y (0) 0,0 (B) = by, (1),

KiQ:(P) 8 (D) R (P) F s (P) =1 (p)s

KiFui () Q1 (p) 0y (P) = (p), (5.5)

K F oy (9) Oy (p) == 1, (p),

Fr (pY K18,y (P) =0y, (p),

KiQi(p) 0y (D) R, (p) F i (0) =N, ().

Making use of (5.5), we write
[ (p)+ Kby (DY i+ e (D) en (DY 1(p) i (D)o (D) Yo (D) - ..

v A0 (P o (DY 1 (0) 4-diu (P) Kot (p) B 0in ()Y a(p) =

2
=Kol DY D)+ Ko 00 2) 280 D)+ N () 280 () o+
KD BbaP s G=12, 00 ) (5.6)
In matrix form equations (5.6) are written as
(5.7)

Ap)Y (p)=B(p)Yet (D) + D (p) F (p).
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For the sake of simplicity we henceforth omit the argument p, remem-
bering that all equations are written in Laplace transforms.

In (5.7)
- @1 Kb n+Kadn)a oo (e +Keidy)ay,
(coa+ Kczdas) 0y @gp~+ Kooy ove (CaatKcodss) 0z
A(p)= (c”—{—Kc;d,-,)a“ cee ...(c”+Kc,-du)a,-,, ! (5'8)
Can+ Kcadnn) @ny (Cnn+Kenpn) Cng -+ @pn - Kenbnn
Yl yrefl fl
Y2 Yiets fa
Y=y Ya@=y. 1+ FO=7 |
Yn Yrefn fn
Keidy 0 e 0
B=—|0 Keolyy 000 0 ,
0 0 Kelun

[Ke 2 (P22 @22) + N2zl Bar {Kc 2 (P22 + daa) ~+ Nag) Bao- . [Kc 2 (P22 d23) + Nyg] Bapy
ool T T
[Key @ tdpHN ;185 (Ko 0t di+N Y By [Ke j (05, )+N 18, 1

[Ke n @unt-dan)+Npal By [Ke n@antdan)t-Nan) Baz- - -[Ke n(Pnnt-ann}tNpn) Brn

Here g,=1.
From (5.7) we obtain an expression for the Laplace-transform matrix
Y (p) of the controlled variables:

|
|
| [[Kcy (oui -+ din) +Nu}bu [Ker (oo +di)+Nulbra. . [Ke i (P14 di) Ny 1By
Y(p)=A"" (D) [B(p) Yt (p)+ D (0) F (). (5.9)
The matrix (5.9) should be represented in explicit form before explicit
expressions for each controlled variable can be written. First we find
the inverse A-!(p). The transpose A4;is given by
a3+ Keibuy (caa+ Kcad) 0oy - (Can+ K nan) Ot
(€11 + Ke 1d11) @us @32+ Keabas voo Can+Ke nnn) @n2
AP= e fic e L K (5.10)

(611 Ke1dn) @in (Caz—tKeoda2) 02 - - - @untKenban

From the transpose we obtain the inverse:

Ay (p) —D"242(p) ... (D" 4,(p)
— A3 (p) A (p) ... (=17 Ay (D)

PR J EIIR P O
AT =F | (M CHAR0) - S, ()
VA () D An(@) e S An(2)
where {—1)#iA,(p) is the cofactor of the element at the intersection of the
j-th row and the i-th column in A;(p), A is the determinant of the matrix
A(p) (it is clearly implied that A(p) is a regular matrix). Multiplying out
the matrices in brackets in (5.9), we find
Kes I Yeent
Kcl 122 Yref!
B(OY (=] o " , 512
@Y @=|x., 1, (5.12)

(5.11)
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[Kes (o1 +d”)+N“],§l Bisfe

{Kca (Pas 4 dag) -+ N1s) kzl Borfe
D(p)F(p)= ............... . (5'13)

[Kc n(Pan+dan) + Nun) kzl Barfr

Inserting for A-'(p), B(p)Yws(p), and D(p)F(p) in equation (5.9) their
expressions from (5.11), (5.12), and (5.13) and performing matrix multi-
plication, we obtain after simple manipulations an explicit expression for
the matrix of controlled variables:

n
nz O VR WY P %
=1

n
D12 Ay Ko plaaY b e

Fp=Ll i

] B0 A Rerou -+ Nl 3, bl | (5.14)

The expression for any controlled variable is obtained from (5.14) by
-equating the corresponding elements of the columns in these matrices.
The expression for any j-th variable is thus written as

Y0 =5 3 V" AK ¥ s (D) +
k=1

+7l§ 2 Y ALK o+ + Ny Z Biufre (5.15)
k=1

i=1

The transfer function is defined as the ratio of the Laplace transform
of the output to the Laplace transform of the input. In single-variable
systems the transfer function is the ratio of the Laplace transform of the
controlled variable to the Laplace transform of the reference value, the
load being ignored. We see from (5.15) that even if the component
dependent on load (or disturbance) f, (the second term in the right-hand
side) is neglected, the output Y;(p)depends on all Y;«(p). The concepts
of a transfer function and a generalized transfer function will be very
useful in this case.

126




The transfer function for the j-th controlled variable is defined as
the ratio of Laplace transforms of the j-th controlled variable to the
/-th reference value, disturbances being ignored,

If f;=0, we have from (5.15)

Yi(e) Ay (p)Keily(p) 1 c ;
Y]ief(P) =t Vet P& 2= K Alys p(p). (5.16)
k=1

kE]

Defining the generalized transfer function along the same lines as in
single-variable control systems, we obtain

Yie) _ AmK
eref(p) - A

e | 1§ j+k Y er(p)
+—A-k21(—1) chAjklkk(P)m‘i"

oy

+ 5 2 VAL Ko o (0)+ i (2)) N (] 3t Sbuaf ). (5.17)
k=1

isl

The physical content of these expressions for transfer functions is
quite obvious. The first term in either expression is the ordinary
transfer functign of a single-variable system; the second term in (5.18)
and (5.17) gives the contribution to transfer function from the coupling
of the given variable to other variables; finally, the third term in (5.17)
shows to what extent the transfer function is influenced by self-load and
by load or disturbance in other controlled variables,

Combined myltivariable control systems considered in this chapter
are conveniently analyzed with the aid of the generalized transfer function.
The characteristic equation of the entire multivariable system has the form

A=0. (5.18)

In what follows we consider some quality aspects of combined multi-

variable systems.

§ 5.3. STEADY-STATE OPERATION

The state of rest is a particular case of steady-state operation. The
statics equations for this case can be derived from the theorem of limiting
values. A statics equation is obtained from (5.15) by putting p= 0,

We consider two different cases:

(a) the case of proportional subsystems, and

(b) the case of integral subsystems (both in relation to the self-load).

{a) PROPORTIONAL SUBSYSTEMS

Using the nomenclature of (5.5) and putting p=0, we write

@, (0)=1Q, (0) 8, (0) R, (0) F,y, (0) D, (0) = 18,,,, (0),

by 0) =K, (0), ¢y, (0)=K8,, (0), (5.19)
dy (0)=0, by = 1,K,0,,; (0),

34 (0)=0,(O)pK;. N, (0)=K}p,(0).
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The steady-state equation for the j-th controlled variable of a
proportional system has the form

Y;0) =—(—2 (—1)** Ay O) Kerlin O Yoo O+

+ 507 2 — 1Y A, O) K., (u 01+ ()N, O)] Zsm VIR

k=1

or, making use of (5.19)

Y;0=155 2‘,( 1Y ** 43 (0) K. st K15 (O Y, (0) +

+ A(O) 2 ( 1)’“ Aﬂ (0) [l‘l’lKiKc ¢eni (0)+1<l mi 0)] 2 slk (0) fk (520)
k=1
Here
871 (0) + K0, (0) ayg oo KiBm (0) 0y
K1 (1, KeiKBmi (0))
K82 (0) 0 Oma (0) 4 vee KyBpy (0) 034
) +Kea (1-4-12K:0m2 (0))
A(O)= K85 (0) 0y 0pm; (0) + oo Ky (0) oy, (5'21)
+Ke g K jK Bmi (0))
KBn (0) 0y o e Bmn O .
+Kc aX
X A+1aK nKn8mn (0))

From (5.20) we can find the steady-state value of the j-th variable for
given loads fu, if all the system parameters are known.

Before proceeding to determine the properties of an n-variable system
under static conditions, we shall consider the application of the above
equations to a three-variable system. From (5.15) with =3 we have
for, say, the lst controlled variable

3
1
Yi= By ; (—l)HkAlec eleaY gt

3 3
+ ;— 2 (=" Ay [Kei(oy i)+ Ny Z Biefr =
i=1

2=1
= 'Al—s {AnKerlntY et — ApKealog ero + A1l ers +
+ Au K. (1~ du) 4+ Nyl [Bufy =+ Brofo+ Busfa] —
— Ay [Kea (Pog 4 dag) + Nool [Bnfy =+ Boofo +Boafs] +
+ Ay [Kea (s + dag) ‘l—N’s:«x] [Baafs + Baofo +Basfal ). (5.22)
Here
ay+Kaby (cu+Kadn) ey (6o Kerdin) g

= (coa+ Kcadsp) 021 0oz + Kesbar (Caa - Keadg) 05 | (5.22")
(Cas -+ Keadas) 0a1 (€33 + Keadas) @sp @3- Keabys
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The transpose in this case is

ay+Kabn (22 Keadag) @5 (c35 4 Kesdss) a5 i(

Ap=| en+Kedi) oz @y~ Keabyp (¢33 -+ Kcadas) 03z
i+ Kadi)ois (e Keadas) @35 @45+ Keabas
whence
A= @99+ Keabas (a3 Kcadas) @,
W77 (eg2F Keadpn) 023 @33+ Kesba !
A — (en+Kadn) @y (Cos - Keadss) 032
R (en+Kady) as @33+ Kesbas
A — (cn+Kedy) @y Qg+ Keaby,
B e+ Kedy)) agg (coz+ Kealpg) @23 |°

Under steady-state conditions, we have from (5.19)

O (0) + KB (0) o1z Kibm (0) o5

-+ KKy 8 (0)
A4 (0) = K3z (0) oz 8m2 (0) -+ K38z (0) g

+ Kczl‘szem'z (0) !
K383 (0) uy K303 (0) g, 0m3 (0) -
+ KeshtsK30,ns (V]
Bma (0) + KcoltzKoBpmz (0)  KsBpma (0) gy
K263 (0) 1z 8m3 (0) 4 Kcattak 38,5 (0) l !
Ag(0)= KiBm (0) @13 K383 (0) gy '
12 Kibm (0) 13 05 (0) + KeatsKsms (0) |

KiBm (0) ey 05 (0) + KeaptoK28ms2 (0) ’
RKiBmi (0) 05 KoBpmg {0) 0gg

A, (0)=

Au(0) =l

or substituting the steady-state expressions in (5.22), we find after simple
manipulations
Y1 (0) = {Kest1K18,1 (0) [(8133 (0) + KioghtoK58 5 (0) ) (B3 (0) +-
+ KeatsKyBms (0) — KyK(,8,, (0) 0,15(0) agyogo)| Yoy —
— KeghtpKoBpmg [K1871 (0) 45 (8,55 (0) + KogitsKy8,3 (0) ) —
— K181 (0) K5B,13 (0) 01505] Vet t KioghhaK3Bpms [K18 1 (0) K8,15(0) 50—
— K10,1013 (0,5 (0) 4 Kooty K82 (0) NY era+ (8,5 (0) -+
“+ KegttoK 20,29 (0)) (0,3 (0) + K. cat3h(383 (0)) —
— KoK, (0) 8,3 (0) ggttg] [K o111 K10y O+ K8, (Fi + Brofo -
+Biafo)l — [K181 (0) Oz + KahtaK3K8,5 (0) ) —
= K8, (0) K383 (0) 013035] (KeoFobtgB,0 (0) + KB mo) Bnfr + o+
+ Baafs) + [(K18,1 (0) KB (0) 095 — [6,9 (0) +
+ KegltoKoBms (0) K18, (0) 0145] (KooKt 55 (0) +- K393 (0)) Bauf1 +
+ Brofla+ ) } { [0 (0) - Koat:K 1071 (0)] [05 (0) +-
+ KegttsKo0ms (0)) [0 (0) 4 Kioghta X85 (0)] +
+ K181 (0) K85 (0) K385 (0) 100505 Oy Oyp0lyy] —
— K3K1873 (0) 0,51 (0) 01324 [0, (0) + Kogito KB, 0] —
— K3K3Bpm2 (0) 6,13 (0) 235045 [0, (0) + K, K181 (0)]) —
— K\K:8,,1 (0) 8,5, (0) ‘112‘7-21}-1- (5.2 3)

We are now in a position to draw some conclusions from this example of
a three-variable system that can be readily generalized to n-variable
Systems. At the outset we have assumed that the structure (i. e., the

stabilizer % and the point of its connection to the system) permits
m
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indefinitely increasing the gain in any of the subsystems without loss of
stability. Let the gain parameters of all the three subsystems K¢, i=1, 2, 3,
increase indefinitely. Then, as it follows from (5.23),

Um ¥y ="y + 50 i+ Bub+ il (=1, 2, 3). (5.24)

K>

In other words, indefinite increase in the subsystem gains under steady-
state conditions makes the output equal to the reference value Y,s appropri-
ately modified by the various disturbances. The effect of disturbances
depends on load coupling coefficients B (0) and the coefficient %. In

m.
the particular case 8,4(0)=0, which can be implemented without any
difficulty, we have

Hm Y, (0) =Y\ .0 (5.25)

This result is obtained for the steady-state conditions, since we have
taken Fn;(0)=0. This is a natural assumption because in this case, as
has been shown in [/39/, increase in gain improves the accuracy.

Two particular cases deserve special attention: one is the case of
stabilization by proportional feedback and the other the case of a mixed-
type stabilizer. Expression (5.24) clearly does not apply in these cases,
and we will have to consider them separately. The following general
conclusions thus follow from the statics of combined multivariable systems
with proportional subsystems:

1. Increase in subsystem gains leads to decoupling, eliminating all
interrelationships between the controlled variables under steady-state
conditions.

2. Increase in gain improves the accuracy of each controlled variable,
and if 0,:;(0)=0, all disturbances are rejected.

If the gain factors are finite, these conclusions are true only to a certain
degree. In the case of finite, but sufficiently large gain, we can speak of
decoupling or disturbance rejection under steady-state conditions to an
accuracy of eonly. In the general case, the actual output values for each
load and for each set of gain parameters can be obtained from (5.23).

We see from (5.23) that each controlled variable depends not only on
the disturbances and its own reference value but also on the reference
values of all the other controlled variables,

Our conclusions are based on the particular case of a three-variable
control system. Generalization to n-variable systems obtains from the
following considerations. It is clear from equation (5.22) and from the
construction of A and A;;, that the highest degree of K., equal to the highest
degree of K. in the expansion of A, occurs only in that term of the
numerator which corresponds to the reference value of the variable itself,
This explains why structures of this class are inherently capable of
suppressing the effect of other extraneous components.

(b) INTEGRAL SUBSYSTEMS

A system is integral if and only if an integrating element is included
in the corresponding single-loop configuration; the integrating element
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should be unstabilized and must not constitute a structural component
of the plant /39/. Under these conditions we have for the steady-state case

a;0)=0, &,0)=upKBn(0), ¢,;(0)=0,
4y 0=0, 1, Q=wKby ©), p,(0)=Knus,©), (5.26)
Ny (0)=0.

Substituting (5.286) in (5.22), we find

‘

Y=

=3

3
= 3 ()" ALK KB (0) +
k=1

3 3
e 2 (D ALK Ko 0) Y Busfe (5.27)
i=1

k=1

Inserting for A,, their expressions and making use of (5.26), we find

Ay == KooK 3KoKakalty8 g (0) 8,55 (0),
A,p,=0, (5.28)
Ap,=0,

whence

Ko1K caK csK KoK pats8 s (0) O1mg (0) 6,25 (0) Y

RoKeaKcatatiatsR KRBy (0) Gy (0) By (0 rer1 ™+

Koy KoK oK KoK aphinaltaO me (0) 6,55 (0) 6,5, (0)

KR eaKesh bt R KoK By ) Byeg 0) 83 0 L1+ Brofo Bl =

= rcf1+'9_’:!%[fl+512f2+513f3]' (5-29)

Y,=

In other words, in integral systems, without increasing the gain, we
find that the steady-state output variable is equal to the corresponding
reference value plus a contribution from all the loads. If we select
024(0) =0, the load contribution vanishes under steady-state conditions.
B (0)
eml(o)
dependent in integral systems also. In a number of cases this load
dependence may prove to be quite profitable. It is actually utilized in
the so-called compounding systems, e.g., an electric power station
where proportional current feedback increases the voltage of the syn-
chronous power generators when the load is increased.
ent ©0)
9mi (0)
decrease the output value of integral systems in comparison with the
reference value.

A significant feature of systems considered in this chapter is that
load, or disturbance, is used as an additional factor for imparting certain
desirable properties to the system as a whole and consequently to the
individual controlled variables. It is clear from equations (5.29) and (5.24)
that under steady-state conditions the output of both proportional (for
Ke—o0) and integral systems depends on the reference value and the
properties of the transducer and all the loads. In proportional systems,
in particular, the load can be employed to improve the accuracy, if the

makes the variable load

In general, introduction of the factor

By reversing the sign of the load can be made to increase or
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gain is insufficiently high for meeting the accuracy standards. It will be
clear from what follows that load can be utilized as an additional powerful
factor for modifying the system dynamics.

§ 5.4. STABILITY

The dynamic properties of multivariable control systems are defined
by equation (5.14). This equation corresponds to zero initial conditions.
Introduction of nonzero initial conditions will not alter the structure of
equation (5.14), only adding a matrix of initial conditions. There is an
almost infinite variety of initial conditions, and no one particular set
of conditions can be given preference. However, zero initial conditions
have certain other advantages than a simple form of the equation. Analysis
of system dynamics with zero initial conditions brings out those properties
which are dependent solely on the system's structure and the numerical
values of its parameters. This information is highly valuable, as it can
be used as a foundation in the development of system design techniques.

In what follows we therefore confine our investigation of system dynamics
to cases with zero initial conditions.

The dynamic properties of any i-th controlled variable are specified
by equation (5.15). This equation is used as a point of departure in our
analysis. Let us first consider the stability of combined multivariable
control systems. The stability of a multivariable system, like that of
an ordinary linear system, is determined by the position of the roots
of the characteristic equation. The characteristic equation is obtained by
putting the system determinant A equal to zero, thus;

A=0,
or in expanded form
ay 4K by (cn+Keidip) oy, (en +Kadi) ey
(€29 + Keadas) @21 a9z Keabyy oee (Cag - Kead ) dan
=leutkedpen i Ky € Kt~ (5:30)
(Cnn+Kcndnn) ‘.ln; o .. -.- ...... . .a.nn.‘i‘. kc ;:bl'ln. -

At the outset let us note that the introduction of a transducer %
mi

(its input receives the overall load or disturbance) does not affect the
stability of a combined control system as long as all 8,.;(p) have no right-
half-plane zeros, i,e., if the transducers themselves are inherently stable,
Indeed, it follows from the notation in (5.5) that each of the quantities

@i, bu, ¢, and di contains the corresponding 6.: as a factor, and 8,; can
therefore be taken outside the determinant from each row in (5.30); now
if none of these 6n;, i=1,2,..., n, has right-half-plane zeros, the
stability of the entire system is independent of the transducer properties.
This fundamental (though trivial) property leads to a very important
structural corollary: if the structure of a combined multivariable control
system (in the absence of load) remains stable at indefinitely high gain,
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the combined control system generated by introducing external load or any
other external disturbance into the original system through a transducer
of a quite general kind also possesses infinite-gain stability. The only
restriction in this case is the requirement of minimum transducer phase,
This proposition can be given a rigorous proof. Indeed, let the gain
factors K. be related by the expression K;=n;K, as in Chapter Four.
Expanding the determinant (5.30), we write the characteristic equation as

06, (9 [Fy (9)+ KF iy () KEF y (2) +-
4 oo +KFN n-n(p)] =0, (5.31)

or dividing through by K" and putting—};;:mﬁ we find

c

Hemx(P)[m"FN(P)+m"‘lFN1 D+ oo +Fuy p-n(p)]=0. (5-32)
1=l

It follows from the results of a previous chapter that the difference in
the degrees of the adjoining polynomials Fyi Fyi—s is determined by the
subsystem structures. If these structures are stable at infinite gain,
the structure of the combined control system is also stable at infinite gain.

Introduction of load disturbance thus does not affect the stability of the
system, so long as the transducer through which the load disturbances are
fed complies with the requirement of minimum phase.

§ 5.5. DYNAMICS

The dynamic properties of multivariable systems, unlike their stability,
depend not only on the poles but also on the zeros of the transfer function.
The transfer function of ordinary multivariable systems is expressed by
equation (5.16), and the generalized transfer function of combined control
systems is represented by equation (5.17).

In order to elucidate the dynamic properties of structures (or, more
precisely, the structural features of system dynamics), let us assume
that the reference values have the form of unit step pulses (or that all the
reference values vary according to the same relation, differing only in

a scale factor). The factor );—’:’2% can therefore be omitted, as it introduces

only a scale correction. The factor entering the second term in the

1
Yiet(P)
right-hand side of (5.17), however, cannot be ignored. System dynamics
are thus determined by the generalized transfer function (5.17).

Let us establish the dynamic properties of systems which remain stable
as the gain Ko is increased indefinitely, assuming fairly high gains from
the start. From (5.17) we now have

e 1, c P
Ve = 5| A1 BV Kejlyy () X (—1Y KAy (0) L (0) +

k=1
kES

+ 2(-1)H1Aji (PY[Kei (0 (PY 41 () + Ny (P)] _y]relf—(P) 2 Biufr(P).  (5.33)
i=1 k=1
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The structure of (5.33) in relation to a small parameter is found by
expanding the numerator in the right-hand side of this equation in terms
of K.. Since A;, (k=1,..., n) are the cofactors of the corresponding
elements in the transpose of the determinant (5.30) and since all the
elements of (5.30) are linear combinations of K., the highest degree of K,
in the expanded cofactors A;is clearly n—1. Now, since each of the
terms in the equation, with the exception of Ny (p) which multiply Au,
is linear in K, the highest degree of K.; in the numerator of (5.33) is also n.

Let us now concentrate on the construction of the cofactors As. From
the construction of the system matrix and its transpose it is clear that
only cofactors of the form A; can be expanded into expressions with
components that are independent of the coupling coefficients ay. This
follows from the fact that only cofactors of the form A;; have diagonal
elements corresponding to the diagonal elements of the original matrix,
Keeping these remarks in mind, we write the transfer function (5.33) in
the form

K(p)=|moy, (P)+m"~oy (D)4 ... +moy_ ., (D)+

+ O, (P) +m"py () fy () + m=py (D) (e k)+ ...
o O (D (@) ey (D) (Bif)+ -

n

s A bea @1, 00) {1 Qs (D roF o )+ m-1P ).

-1
. -+mFN,_<,,_1,(p)+FN,_,.(11)]} . (5.34)

1
where m= A

We see from (5.34) that the numerator in the right-hand side of (5.33) is
a composite function of system parameters, gains, and loads. Let us try
to elucidate, in as great detail as possible, the structure of polynomials
in (5. 34); this will enable us to reach some conclusions concerning the
general structural properties of these systems.

First consider the denominator in (5.34). Since we work with structures
which remain stable for K.;—+ or, equivalently, for m—0, the degrees of itwo
adjoining polynomials differ at most by 2, i.e.,

Ny, ,—Nn, 1 <2

]

Since A;; is a triangular determinant constructed from elements of the
same matrix as A, with the omission of one row and one column, the
polynomials ¢w: obey the same rule and for the degrees of two adjoining
polynomials we have

_ —N. — .
P, Py, Ny NNH—l

This conclusion is obviously also valid for the polynomials Yn, and Ey,,.

Let us now establish a relationship between the absolute value of the
degrees of the polynomials in the numerator and the denominator. The
highest degree in A is greater than the degree of A4, by an amount equal
to the degree of the term a;;+Kcbii. From (5.5) it is clear that the degree
of a;(p) is greater than the degree of b;(p), so that the highest degree in
A is greater than the degree of Ay (p) by an amount equal to the degree of
a;:(p). Making use of the expression for b;(p) we conclude that the highest
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degree in A, or equivalently the degree of Fyy, is greater than the degree of
9., the difference being "degree a;—degree Fun:(p)0mi(p) ." If the

structure has infinite-gain stability and if the additional conditions are

also satisfied, the system dynamics is determined by the degenerate
equation, which has the general form

P,—a (P)+ ‘PN,—n (D) a(@ir) T Eny—n (2} [ (ﬁtkfk) (5.35)
H B1i () Fry,—n (P)

Ky (p)=

Let us now find explicit expressions for FM_". Py yy_n s and &y,
This will provide us with a starting point for the reconstruction of the
transients and for the determination of the fundamental properties of
systems with sufficiently high gain.

We will make the calculations for the particular case of three inter-
related variables, and then generalize to the case of n interrelated
controlled variables.

The equation for the 1st controlled variable is obtained from (5.17),
where we put a=3: :

Y1 (p) Ay (P) Keilyy (P) Yo et (P)
Vit D) = A Kc2A12 (p 122 (P) Y1 i (P) +

5 Kl (9) by (p) 71D+
+ 3 AnlKaOu(P)+ du(P)) + Ny (D) gt ( () + Bk () +
+ Bifs (7)) — & A [Kes (022 (P) + i (1)) + Ny (D] X
X 7oy Guhy (P)+ o+ Posfs (P)) + 5 Ans[K s (P () +
4 dyy (V) + Nag (P)] oy B (9) +Bicla () + Fa (P, (5.36)

where p,;=1 and

ay (p)+ Kerbu (p) len (PY+-Kerdyy (P oyp (611 (B) +Kerdi (p)] s
= |[coa(P)+ Kooz (P)] 02 G99 (P)+ Keoboz (P)  [€22(P) K codas (P)] g3 |s (5-37)
[esa(P)+Kcadss (D)) 0gy [€33(p) +Kcsdss(P)se  @ss(P)+Kesbsa(p)
A = gy (p) -+ Kcgbse (P) [€33 (P) + K adss (P)] 02
B {eaa (P) A+ Ko 922 (P)) 025 33 (P) + K sbas (£) ! (5.38)
A — len (P)+Kerdn (D) s 653 (2) + Ke adaz (£)] 222
27 e (D) + Kerdu (PN us @55 () +Kesbss () | (5.39)
_l e (D +Kerdy (D)) owe  azp () + Ko 2bao (0)
B ey (0 +Kerdn (P s (€20 (9) - Keadao (P) 05 | (5.40)

Let the various gains K., be of the same order of magnitude, so that
we may put K. =K.,=K.;=K,. This is not a fundamental restriction,
since we can always make use of the relation K;=n;K. Dividing the
numerator and the denominator in (5.36) by K® and taking K.~oc0, we obtain
after simple manipulations a degenerate equation in the form

Y,
O — L[ () {1 (2) o (P)+ s ()] X
y re
Xm[fx (P)+|312f2 (P)+513fa(P)]} Alzb(P){lm(P) 2 fg; +
1
+ [P () -+ o (P iy (Bt (p) + 2 (9) +Ba (P)] }

-+ Ay () { s () 2L A [oss () + s (PN X ey ButFa (P) - Bidfa () +- o ()]} ] (5.41)

((P
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where
by (p) di(p) ey diy (p)ay,
dyy (p) g baa (p) 3 (p) 0z
Ay (p)og das(p)azs by (p)

by9 (p) 33 (p) @,

Allb:, dyg (P ags b33 (p) ’ (5'43)
dy(p) iy dys (p) sy
diy(p) ey bas (p)
dy(p) e, bay (p)
dy(p)oss dy (P oy |

Adeg3= 0 (5.42)

Am:l , (5.44)

App= ‘

(5.45)
The degenerate equation of the 1st controlled variable in an a-variable
system obviously has the form

Y;(p)
y] wef (D)

1 n
=5 L Am (D)~ X
k=1

x{ baa (P) 5+ Tows (D) i (] LY }

Let us now derive the formulas for the calculation and analysis of the
dynamic properties of combined control systems. As in Chapter Four,
we intend to make use of the D-decomposition curve for the gain of the
degenerate part of the equation of each control subsystem.

The gain in the degenerate part of each subsystem is made up of two
factors, the plant gain K; and the gain p; of the unstabilized section. The
gain Ky 0f the degenerate equation can obviously be altered by changing p,.
We will write K,;=u,K;, and hence

bi ()= Dy () Fuy (1) Qi (P) 871 (P) +- WiKiF s (D) B; (p) =
=b6:(P)+K segiF i (P) By ().

In this nomenclature equations (5.43)—(5.45) take the form

by (P) - 12KoF me (1) Oma (P) a3 (p) 03
— 5.4
A= 4,, () 0z by (9 oK 2 Om ) | (5.46)
’ _ dyey, d3s (p) 05, ,
Am-—' dit(p) s WaKs+ K aeg 3Fms () Oam (p) |” (5.47)
' - diy(p) oy paKy 4K, deg Funs (P) B3m (p)
Am—ldn(li)als day (p) @3 l (5'48)

Interchanging the rows and the columns in (5.42), we expand the trans-
posed determinant in elements of the first row. Using our nomenclature
we thus write

By = b1 (D) Avty (P)~+ 1K F 1 () 8y (D) Aty (D) —
— Ay (D) Oyt Ay (P) + iy Asgy (), (5.49)

and the equation of the D-decomposition curve for p is
b 21 (D) Avip (P) — daa (P) 021 Avap (P) - das (D) 031 A1 (p) (5.50)

b= KiFu1 (5) O (P) A1y (P) d
p=jo.
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We divide the numerator and the denominator of (5.41) by KiFumi(p)8mi(p)An »(p).
After elementary manipulations we obtain

Yip) _ LA—BWA+D
ercf(p) 0(p) (5.51)

where

Aus P 1 (A + lou D+ du Dl g Y o3 () Bl (9) + Budfa (o)1 |
Lip)= ReFors (7) B (p) A ® '

Ay ([ s () 0L 4

B(P) = R 31O o)

+ [paz (P) + da2 (PN 57— Vi (p) == {Baifs (P) -+ F2 (P) 4 Baafs (P)]}
Klle (P) 071 (P) Av1s (P) ’

Ay (D] PR 1 () +

D)= K B8 (P A
+ 1938 (P)+ dss (P)) g Uil (2)-F Bl (P) 15 (P}
KiF 1 (D) B (P) Aviy (D) ’

. by (P) A1y (P) — dag (P) 0a1Ai2p (P) + das (P) 01 A1ss (P)
o(p)=m+ RiFs (7) Oms (8) Avrs (7)

p=jo.

This equation can be readily generalized for an n-variable system. It
may be used as a working formula in stability calculations and in selecting
system parameters that ensure the required performance characteristics.

Indeed, the denominator in (5.51) is the sum of the gain ps and the
corresponding D-decomposition curve. If the D-decomposition curve is
available (from which the stability of the entire system can be inferred),
the well-known rule /39/ can be applied to directly determine from this
curve the values of the denominator in (5.51) at any frequency. The
numerator of (5.51) is the equation of the auxiliary curve. The dynamic
properties of the entire multivariable system are completely determined
by the position of the D-decomposition curve and the auxiliary curve.

As an example we consider a two-variable combined control system,
from which we will try to deduce some general properties of combined
control systems.

For n=2 equation (5.51) is written as

iip) __LAENPL P .
Viet () () o p=e (5.52)
where .
L(p)— Ay (p) 1 (P)

T K EFm (D) O (D) Ap (D)
A6 (P [P () + it (P P U ()4 Bufa (2]
KiFm1 (P) 8m1 (P) Avip (P) '
i () (p) =B
P(p)=
KyFmy () 8 (P) Aup (p)
+ [p22 (P) + a2 (D)) 55— ) [Barf1 (P) 2 (P)]

KiFpm (p) Gmn (©) Aup (P) !

. 51 (p) Auip (P) — das (P) 091
O=H1 P (2) o ) i1 ()

N(p)=
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Inserting for the operators in (5.52) their expressions from (5.5),
we obtain

Yﬁ:ﬁ)) _wml +c<p)1+$((5))+6(p)——§(p)' (5.53)

where

8= g2 11 () + B () 5

V() =22 T [ (o) +buha ()] 7L

82 =KiF (2) Q ()8 (2) 02 { KittaFo (p) By () 722201
+ KaaF s () 822 () - Kof o (1) Q) O ()] X 31 (Bufs (9)+ o (2)] }.
£(0) = KiF 1 (P) Oy () (Ko (8) B2 (9) D3 (5) Q2 (9) Fra (£) B, ()
and
9(p) =2 QP Fr (7) b1 () [Pllz"" KsF 2 (p) Qz (P) Bim (£) 01 +u,

where

Py = [02KeF 2 (P) Oz (P) + D2 (p) Q2 (P) Frz (P) Oz (P)].
Py = KiFpy1 (P) 81 (2) [KetoF ms (£) Oz (p) + D2(p) Q2 (D) Frz2 (P) Oz ()]

The following conclusions follow from (5.53).
1. Suppose that the controlled variables are coupled neither through
the plant nor through the load, i.e., a»=0 and Biz=P2;=0. Then

P, 9 (p) _fi(p)

Yio) Bm1 (2) V1er (P) . 5.54
Tt~ L DO QD () P/ (5.54)
L o L

and in the absence of load disturbance we find

iy ___ )
Yitet(2) D, (p) Qi (P) Fmi (p) *
L oy R

(5.55)

We see that the auxiliary curve is sensitive to load signals. The function

SL((’,?)— can be so chosen as to ensure a desirable transient. As it could have
ml
been expected, the function 59%} does not influence the stability of the .

m

system. If ai;=0, fiz=Ps + 0, the system dynamics can be improved by
supplementing the self-load with load from other subsystems.

2. The systemdynamics are invariably determined by the D-decomposition
curve and the auxiliary curve. The auxiliary curve is highly sensitive to

the function :L‘I((’%. Hence follows a very significant conclusion, namely
m

that the system dynamics can be altered between wide limits with the aid

of transducers ge’-’:?(—(l;—)).
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3. The equation of the D-decomposition curve can be written in an
alternative form. Carrying out term-by-term division in the second term
in the denominator of (5.53), we obtain for the D-decomposition curve

- DMUMD Fu® | K Fu()
m=——"Frim TR Fa) X

X 8ma (P) Q= (p) 021 (P) (5.56)
1 () (Kabal mz (P) Oma (P) -+ D2 (P) Q2 (P) Fra (P) Bz (P)]

The first term in equation (5.56) is the D-decomposition curve for psin
the uncoupled case, the second term gives the contribution from coupling.
Equation (5.56) can be written in a still different form:

1. == Fn2 (p) . Qz (P) ]! (p) 557
p’l - Dlh +Kl F’“ (p) e”” (p) sz (P) [""2“ Dp.,] » ( )
where
D, = — Dy (p) Q2 (P) Fra ()
He KaFma (P)

is the D-decomposition curve for p,(the gain of the second subsystem).
D-decomposition curves for y and p; can be plotted before we have

actually decided what -e%’l—((% are to be used.

D -decomposition curves enable us to determine all the terms in
equation (5.57), with the exception of the transfer function 8m:(p) which is
chosen in compliance with a certain quality criterion of the entire system.
We have thus derived a formula for the synthesis of combined control
systems.

The method described in this section can obviously be applied to systems
with n controlled variables as well,

§ 5.6. LOAD REJECTION

The effects of load and other disturbances are dealt with in separate
sections of the following chapters. At this stage of our discussion of
combined control system dynamics, however, we cannot ignore this
problem altogether. It should be emphasized that the load rejection*
is a characteristic feature of combined control systems. '

Since load rejection is generally related to the problem of coarseness
in the sense of A. A. Andronov, we shall investigate the complete, and
not the degenerate equation. Suitable working formulas for load rejection
in the degenerate equation will be given at a later stage.

Consider the equation of the j-th controlled variable in a system with
n variables which are coupled through the plant (equation (5.15)). We see
from (5.15) that the load does not affect the controlled variable if

Aji(P)[Kct(Pu(P)+du(!7))+Nu(P)]=0- (5.58)

*  We are dealing with loads applied to the plant only.
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Equality (5.58) is satisfied if
(2) Au(p=0

or (5.59)
(b) K. (on (p)+4d, (P))+Ny (p)=0.

It is readily seen, however, that the requirement Aj(p) =0 is inadmissible
since, as it follows from (5.15), ¥, ., is also multiplied by A;;(p), and the
condition As(p)= 0 would eliminate the entire control system, as well as
the load. *

Thus load rejection is based on the condition

2

Keilou(p)+d, (Pl 4N, (p) =0. (5.59")
Inserting for the operators in (5.59') their expressions from (5.5), we find

Ko [KikiFr; ()8, M)+ KiF (p) Q,(p) B,y 2]+
+KiQi(P) 0 (D) R, (P) Fry (p) =0, (5.60)

or

Bni(p) W Fui (P) _
K52l o + G R =0,

whence follows an expression for the transducer ratio:

8ulp) _ _ (p Fulp) ) Quip) _
ety = (Rip +K. 72 o)

(R1 () Frni (p) 4 K iF i (P)) Q1 (p)
I .61
WiFmy (p) (5.6 )

This function is fairly difficult to implement since, as it follows from
(5.61), the degree of 8,;(p) should be greater than the degree of 8,:(p)at
least by an amount equal to the degree of the product Ri(p)Qi(p). This is
precisely the degree of the section which includes the stabilized component
R:(p) and the unstabilized component Q;(p).

The problem, however, is solved very easily by a simple modification of
structure. Clearly, the effect of load is eliminated if the output of gr:—’l((‘%is
delivered directly to the plant input. Indeed, first we write equation (5.61)
in a different form:

Ket  wi 8y(p) Kei Fri(p)
BB U@ O TR Py T 1 =0

(5.62)

Now the transducer output is delivered directly to the plant input. In the

result of this operation, the factor before g:z((f’)) should be divided by the

transfer functions of those elements which are dispensed with in the new

*  This problem is considered in more detail in the next chapter.
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. . : . Kei [T -
configuration, i.e., the transfer functions AR AR We thus obtain for

the transducer ratio

enl(p) — Kci Fnl(p) 5 63
s =—=m o] (5.63)

This transfer function can be implemented without difficulty.

As we have already noted, g”‘l((’;)) does not influence the system stability,
m

provided that 8u:(p) has left-half-plane roots only. The problem of
Andronov's coarseness therefore does not arise in this case.

§ 5.7. LOAD REJECTION FOR K. -»>

In the preceding section we showed how to choose the transducer ratio
and how to connect the transducer to the system so as to ensure complete
load rejection. Earlier we demonsirated the advisability of using structures
which are stable for K->, In this section we correspondingly proceed

to consider the choice of g;lz((?) for this special class of structures, when

the fundamental dynamic properties of the system are entirely specified
by the degenerate equation. Our aim, of course, is to achieve perfect load
rejection.

From (5.46) it is clear that the load does not affect system dynamics if

0, (p) 4y () =0. ' (5.64)

Inserting for pu(p) and du(p) their values from (5.5), we have

K Fri (D) 0, (p) + K,F o (p) Q) O (D)= 0

or
W 8w Fu(p) (5.65)

QP O  Fmu(®’

This can be achieved without difficulty if the structure is appropriately
modified. Indeed, if the transducer output is connected as shown in

Figure 5.2 (after the element with the transfer function f’%)’ the left-

hand side of (5.65) is divided by 61%77’ and for K. we finally have

0,1 (P) — Fni (P) 5.66\
Tt () — Pt (D) (5.66)

There is no need to emphasize that a transducer with this transfer
function can be built without any difficulty.

In the general case of an n-variable system, load rejection is achieved
by using structure configurations shown in Figure 5.2. The transducers
are chosen from the condition

Ont __ Fpy (5-67)

m_ le’

Rt
=
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where i=1,2,,.., a.
In practice, the system can be further simplified by using a stabilizer

which doubles as a transducer. In this case the load disturbances kZﬂ,-kf,,
=1

are delivered directly to the stabilizer input, as is shown in Figure 5.3,
There is no need to adjust the parameters of the stabilizer and the
transducer to achieve matching, as there is only one set of parameters
in question, the parameters of the stabilizer.

Em (p) n
Enilp) Z fin

i (P)
Fmi I ]

FIGURE 5.2. A combined control system with load
rejection.

Keii

FIGURE 5.3. A stabilizer used for load rejection.

Thus, for sufficiently large gain K., the structure in Figure 5.3
ensures that the control process is independent of loads and disturbances
applied to the plant. (The case of disturbances, loads, and other inter-
ferences applied not to the plant but elsewhere in the system will be
considered separately.)
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Chapter Six

INVARIANCE AND NONINTERACTION IN
MULTIVARIABLE CONTROL SYSTEMS

§ 6.1, INTRODUCTORY REMARKS

In automatic control systems one always faces the problem of eliminating
the effect of disturbances (loads) on the variation {or, in particular cases,
constancy) of the controlled variables. In other words, we have to deal
with rejection of external disturbances acting on the control
system.

The principle of invariance, when some generalized coordinate of a
dynamic system is independent of disturbances, was formulated by
N.N. Luzin in 1940, as a generalization of the previous results of
G. V. Shchipanov. The problem of invariance was subsequently developed
by Kulebakin /28, 27/, Petrov /51/, Fel'dbaum /66/, Kukhtenko /24/,
and others (see Bibliography). Rozonoer [58/ reduced the problem of
invariance to a variational problem.

Synthesis of systems where the controlled variable is entirely independent
of external disturbances, the so-called perfect load-rejecting systems, is
discussed by Shchipanov /76/. In later researches (27, 31, 32, 51, 56/,
Shchipanov's results were considered in very great detail and we now have
a thorough understanding of his fundamental contributions, as well as of
some inaccuracies in his work,

The practical significance of Shchipanov's ideas is due to the fact that
the load-rejection principle is realizable in real systems. Petrov [51/
formulated the two-channel principle, which provides us with a key to
the design of single-variable systems with complete or partial rejection
of external disturbances.

In this chapter invariance is considered in application to multivariable
control systems. The characteristic problems of multivariable control
systems, aside from those which, though solved by the general methods,
refer to single-variable systems, arise from the fact that each controlled
variable is influenced not only by various disturbances but also by all the
other controlled variables: all the variables interact through the plant,
the measurement devices (in multidimensional servosystems), and the load.

One of the fundamental problems in multivariable control is the problem
of noninteraction, i.e., choice of structures and system parameters
ensuring that the various controlled variables do not interact, so that the
control subsystems for each variable can be considered independently of
all the rest.
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The problem of noninteraction was first formulated by I.N. Voznesenskii
/10, 11/ and he was the first to propose methods for the selection of
regulator connections that ensured active control by each subsystem.
Noninteraction is the subject of numerous Soviet /5, 6, 21, 19, 52/ and
Western publications (see Bibliography at the end of the book),

The problem of noninteraction is closely related to the problem of
invariance. It is shown /27, 29, 51/ that the noninteraction conditions
sometimes coincide with invariance criteria,

It is clear from the results of Chapter Five that rejection of external
disturbances does not ensure noninteraction. Our task is thus to consider
the relationship between invariance and noninteraction. It will be shown
that invariance in relation to external disturbances does not automatically
ensure noninteraction and vice versa: noninteraction does not automatically
mean invariance. That these problems should be considered separately
follows from certain physical realizability conditions, and in particular from
conditions of stability of the entire multivariable system.

§ 6.2. THE PROBLEM OF NONINTERACTION

In noninteracting multivariable systems, the controlled variation of one
of the variables does not influence the other variables. Noninteraction
in this sense may be complete (or perfect) or alternatively it may
hold true to a certain finite accuracy.

Noninteraction can be considered from two points of view. First, it
may be attributed to what we call technological factors. As an example,
take the system of frequency and speed control in an asynchronous motor.
Desirable performance characteristics, especially when starting or
stopping the motor, are ensured by varying the stator voltage and the
supply current frequency according to equations which differ from the
natural variation of the variable-frequency outputs (e. g., in a variable-
speed synchronous generator).

Second, noninteraction may be regarded as a certain dynamic property
of the system, an organic outgrowth of its structure. This case is of
considerable importance and will be treated separately in the following.
I will first discuss the fundamental results obtained by Voznesenskii /10, 11/
and American authors /77/ and then proceed to analyze my own contributions
to the subject.

1. Voznesenskii's fundamental results /10, 11/

These results deserve special attention, as they were essentially the
first contributions to the theory of automatic control and laid down a
foundation for the design of quality control systems /10, 11, 19, 52/,
They also provided a point of departure for numerous later researches,

Voznesenskii's results apply to cases when the controlled variables
interact through the plant only. The problem is thus stated as follows:
choose a control system such that noninteraction of
the individual controlled variables is ensured,
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The problem is investigated for a multivariable control system
described by the following set of differential equations:

d
2, ""—d);l ==l — Pio
........ (6.1)

where a; are constants, y; are the controlled variables, pp are the steady-
state loads, torques, etc., w; are the loads, torques, etc., corresponding
to the variables y;.

The quantities p; are controlled by the controllers m;. To ensure
noninteraction, p; is controlled not by the i-th controller alone but by
all the interconnected regulators jointly. The behavior of the controllers
is thus described by the following set of equations:

Bo==kymy Rty o ARy .
Bo== ko kit .. =+ kg, (6.2)

Py = knlm‘l + k02m2+ e +klmmm

where ki gives the effect of the £-th controller on the i-th parameter p;.

In a system with p controlled variables a measuring device (a sensor)
is provided for each variable. Ideal transducers are assumed, satisfying
the relations

Y= nz; (8.3}
where i=1,2,..., n. The various controllers are described by the equations

my=lo+ gy + 12+ o a2
my== by + Iy +lp2y+ - + D2, (6.4)

my= I+ 1n2+lozo+ ... 102,

Here [; are the transfer numbers between the measurement devices z, and
the controllers m;. These are the numbers to be determined if noninterac-
tion is to be ensured,

Inserting for m; in (6.2) their expressions from (6.4), we find

Py = kyly +kulnz +Eulpze + Enhizs+ oo +Endaz,+
~+ kil + Frolanzy + kiglynzy + Rrolosza -+ oo - Rilapz, -
“+ oo Fhialn T+ Rialyzi - Riglsz b Rplaza+ -0+

n n n
+ kiglgsn o = hzlkulio +2z Z}kuln‘i‘zz?kuln ..

voo F 2, Dbyl (6.5)
1

n n n
Ho= g]kmlio‘i‘zl §k2i111+z2 Zkzilu‘F e 2, Z]kztlln’

...........................

n n n n
By = Eknilio_f"zllzkm’lll + 2212/3,"'1:'2 + .+ zn%jl koilin:
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The coupling coefficients /; are chosen so that all the sums of the
products kply,, p+ g, vanish, i.e.,

Dkl =0 for g=+p. ) (6.6)
s=1

In (6.5) there are n{a+1) unknown coefficients, whereas (6.6) provides
only n(n —1) equations for these coefficients {n coefficients of the form
Iy and n coefficients of the form k; are not included)., The number of
missing equations is thus

n+Do—n(n—)=n4+n—n+4+n=2n.

The 2r missing equations can be obtained from the following conditions.
Making use of (6.6), we write (6.5) in the form

b= hzlklslso + 2z 12 kily,

o= ;k%lso"*" z2lzk2sls27 (6.7)

By = ; kol 24 ; L -

If the control domain for the given range of py is denoted by

Ap’l = Wi max = Kmins (6 . 8)

the coordinates of the measurement devices by 2z,m, and 2z, ,, respectively,
and the irregularity coefficients by

o, = Yimax — Yimla , (6.9)
Yio

we can make use of (6.3) to obtain after simple manipulations
6 n

Ap’l = _1;911_0_ E klslsl '
1

6 n
AM:—LHZ”Ekmls,, (6.10)
1

n
2
Ap,=— —":1!{_:2 2 L
1

If Ap; and §; are known, the set (6.10) provides n additional equations.
Now the last n missing equations are obtained by substituting the steady-
state values pipthat correspond to the steady-state controlled variables y;
for pypin (6.7) and remembering that z,0=i—’l°:

n n
Bro== 2 kilo+ 1’1;11 2 byl
s=1

s=1

Bao= X kalot 222 W ko (6.11)
1 1

........... s e

n n
Wpo == 2 knolo—+ ln"ln‘o' 2 L -
1 1
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Equations (6.6), (6.10), and (6,11) give n(n+1) equations in n(n+1)
unknowns, o, ..., la, bov. ey Luseoy Inn.
Solving these equations for I, we find

By En

lj=— S & V=12 ..., m i=12, ..., n), (6.12)
where
kll k12 kln
A |
LI TV TR
R T

and Aj; is the cofactor of k;. Having thus selected the transfer numbers Iy,
we ensure noninteraction within the framework of our assumptions.
Noninteraction is thus ensured if the following are known:

(a) the matrix of the coefficients |k;ll, where i=1,2,...,n, j=1,2,...,n;

(b) the irregularity coefficients 8;, wherei=1,2,..., n;

(c) the normal loads py, where i=1,2,...,n;

(d) the rated (guaranteed) steady-state values of the controlled variables
Yy, Where i=1,2,..., n.

It follows from the preceding that noninteraction is primarily the outcome
of a certain mode of operation. In a different operating mode, interaction
may be restored.

We have discussed here the fundamental contributions of Voznesenskii.
Later researches are based on his work, and their aim is to establish non-
interaction criteria under more complex conditions. Notethat Voznesenskii's
presentation is most elementary, since each controlled variable is described
by a first-order differential equation. Furthermore, ideal transducers
(measuring devices) and controllers are assumed.

The noninteraction conditions become obviously more complicated in
slightly more complex systems. It has been shown /19, 52/ that in indirect
control systems employing the same simple plant as before, noninteraction
requires equality of time constants of all the servomotors.

We do not discuss here further developments of Voznesenskii's approach,
and the reader is referred to special literature /5, 6, 16, 19, 52, etc. /.

2. The method of Boksenbom and Hood [/77/

Boksenbom and Hood /77/ published their results in 1949 and they are
essentially similar to those of Voznesenskii., The only difference is the
mathematics of the solution. Almostalllater Western publications in this field
/81, 82, 77, 78, 79, etc./ are based on
the original paper of Boksenbom and Hood*,
and we therefore proceed with a detailed

Zy = —> .
Ty > 2 analysis of their method. Consider a plant
P Mgt with i controlled (dependent) variables y,

which are henceforth referred to as output
FIGURE 6.1. A multivariable controlled variables or briefly outputs, and » independ-
object with » inputs and # outputs, ent inputs x (Figure 6.1).

*  With the exception of the book by Mesarovi¢ /85/, mentioned in Chapter Three.
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If each output is dependent on all the inputs, we may write the following
set of equations in Laplace transforms:

Yi=EnX + EpXyt oo +E1, X,
Vo=EyX,+EnXy+4 ... +EpXy, (6.13)
Yi=E X\ +EpXo+ ... +E X,

or

Vi=BEuXy  i=12 ...
=1

The operators Ejare the transfer functions between the £-th input and
the i-th output.

Y AR R FR (R

]

Enbig=—-byi bppuy-bsg [ —= 4

£y €y Lyym-mo-- £y 8

flll [nz [m' [}o };
Ex

FIGURE 6.2. Schematic representation of
the controlled object (see Figure 6.1),

Equation (6.13) may be written in matrix form (Figure 6.2). Each matrix
element E; stands for the corresponding transfer function. Each input as
if acts on its own column and, upon multiplication by the elements of that
column, gives the output sum in the corresponding row. Thus X, acts on the
first column: it is multiplied by each element of that column, the products
are added up, and the sum is the output written in the first row. From
the general inatrix E we isolate the first / columns, this being the number
of dependent (controlled) outputs, and form an i Xi square matrix.

It is assumed that with n inputs only i<n outputs are controlled. For
this reason n—i inputs can be manipulated as desired.

Figure 6.3 is a functional diagram of a control system for a single
variable. The controller outputs X, are represented by the set of equations

K=y (i —V)+Fon =T+ ... ey (i —F)+
F ey X — X))+ - Fo (X, — X)),
X2=C21(Y1—71)+022(Y2—}_’2)+ +021(Y1—?1)+
FGuan =X+ e 6, (X, —X,), (6.14)

Xo=en(i=F)+enls—T)+ ... +o, (¥, —F)+
Ty (K — X )+ - e (XX
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First note that the controller outputs depend not only on the deviations
of the respective controlled variables but also on the deviations of all the
other variables, and equations (6.14) are analogous in this sense to
equations (6.2) in Voznesenskii's method. The only difference is that
contributions from the slack inputs X,,,, etc., are added.

Controller
Sl Cip)
Disturbances' }—‘—'{ l—‘—{

v

d Lip)

£

] i 1

J
Plant Measurement .

device Serting

FIGURE 6.3, A single-variable control system.

An obviously interesting approach is to use the slack inputs as additional
control factors. Equations (6.14) can be written in the following abbreviated
form:

[ n
Xk=1§ij(yi—Y1)+"=%ICIIZH(Xu—'Xu)- (6-15)

Figure 6.4 is a matrix representation of (6.15). The controller matrix
is interpreted in the same way as the plant matrix in Figure 6.2. The
inputs Y—Y and X —X act on the columns and the row outputs are X, Each
input is multiplied by all the column elements, and the sum of these products
in each row gives the corresponding output.

c ¢’
r A ™ 7~ b\
&, ,
I L S Girb,
’ ’
* Gor Gz "" G Cnit,
- e
'} 'é}” ‘/‘rz'“" ‘;r: 6;7,1"7 6;:;

Iy

O5-RU YT A5~ F) b )07

FIGURE 6.4, Schematic representation of
a controller,

A complete control system is obtained when the previous equations are
supplemented with the equations of measurement devices and servomechanisms.
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For the measurement devices we may write

Yo=LuYs
=1,2 ..., B, (6.16)
Xo= Ly Xy

w=i+1,i+42, ..., 0.

In what follows it is generally assumed that each independent variable
has its own servo, which is actuated by the corresponding signal X.
Introducing the disturbances f,, we write

Xp=suX,+f (=12, ..., 0. (6.17)

We have thus obtained the following set of equations for a multivariable
control system
The plant equation

Yi=3EpX, (=12....0
The controller equation

i n
Xk = glckv (Y‘v - Yv)+u§+1cl’m(xll_xu)(k=l’ 2’ MR n)' (6. ]_8)
The equation of the measurement device

F,=L.Y, X=LX

w o (LI 1
v=12,..., Hp=i+1,..., n).
Servo and disturbances
Xpy=su:Xp+F (k=12 ..., n.

This set can be represented, as before, in matrix form. If the plant
has three controlled variables (dependent outputs) and five independent
inputs, the corresponding matrix is shown in Figure 6.5.

% N :
— by G2 Gy Gy
a APy
7 Y@ ez Y23 s
J ’ ot
Cy 4’72%‘}7 &5 X, Sis
00 0¢,0 1
LT
%] % 0000@}__,{:}__6],;
! b A5 S
£, £, 7, 3
£y bz b bos| X L
73 O e, Dl LWy ¥’
£y Epz b33 Lou ios Yo (®J‘$ ( 3} 17 17
£y Ezp L35 54855 4 Lyy
Plant  AX, A A5
b A A A A
Y 4% 44

Three ¥ settings

FIGURE 6.5. Martrix representation of plant and controller.
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Solving (6.18) for the controlled variable ¥;, we find

n 1
Y, =lz§1 vg] Ejkskkckv Yv— L.Y)+

+ 2 EnSusCiv (Xy— Ly X+ X Ejafa (6.19)
k=1 p={+1 k=1 )
U=1,2 ..., i)
{ n
Xk= zx Slzkckv (yv - vayv) +u§+ lSkaIIzu(Xu - Lprp,)+ fk ( 6.2 0)
k=12 ...,n).

Now that the system equation is available, we can proceed with the
problem of noninteraction. Several different kinds of noninteraction are
considered in /77/. The corresponding matrix representation is given
in Figure 6.86.

b 14

LE{ I‘44
’JL” 1/ X L“?
L 2 -1 L
3 5B A

Y, —
£S5 £5¢ £
%
5
' - gl1ol\e|r\o
A e S¢'— 77717
% ' = 4
—————
System matrix

FIGURE 6.6. Illustrating noninteraction conditions.

Noninteraction is first considered in its most elementary sense: the
output ¥; is changed only by changing the setting Y;.r, and none of the other
variations affects this quantity; alternatively by changing the setting Yi.
we change only one controlled variable Y;, or, in general, each controlled
variable is affected only by the variation of its own setting and is independent
of other reference values.

Noninteraction is obtained if and only if the system matrix is diagonal.
The noninteraction condition is thus that all the nondiagonal elements of

the system matrix are zero. For j=1,2,..., iand j#+ 1t we have
n
*zl EjpSpsCa =0 (6.21)

and for all the others, from p=i+1to =z,

SupCur=0 (6-22)
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or

Cpi =0. ' : (6.23)

Equations (6.22) and (6.23) show that from p=i+1tou=n, the elements
of the /-th column in the matrix C are all zero. The same conclusion
obtains from (6.21) for the elements of the column tfrom j=11to j=i
(whenj #1¢), i.e.,

i
2 EpSuCr="0. (6.24)

Relation (6.24) yields i-1 equations in { unknowns, and we may thus
write a relationship between any two elements of column f in matrix C.

We now proceed to establish the noninteraction conditions in explicit
form. Returning to equations (6.19) and (6.20), we isolated in (6.19)
the term with the setting Y: and write

n {
V=3 2 EuSuCu(ty—La¥)+
N vt
+k§l ll=§i]+l E”’S’”’C;"' (Xu— LX)+
+ ,z'] E/kskkckl(yt - Lttyr) + Iz2=1 E/kfk (6.25)

and
1 n
X,= 2}1 SuuCry (Vo — LY +u=2i+1 SusCin (X — LX)+ e+

vk2
+Skkckr(yf_Lrtyt)~ (6-26)

In order for the setting ¥; to influence only the controlled variable ¥;,
j=t, without interacting with the other outputs, it is necessary that

!
kgl EpSeiCu=0, =+t (6.27)

Moreover, in (6.26) only the last term may depend on Yi; all the other
terms should vanish, i.e.,

SiCry=0 for v=1 (6.28)
or
Ciy =0,
where
k=i+1,..., n

Making use of Kronecker's delta

6, =0 for i+k
8, =1 for i=4,
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we write (6.27) in the form
i i
kz_:} E,kskkck,=§]6,,5,kskkck, (=1, 2, ..., 0. (6.29)

For any given (fixed) f, equation (6.29) gives i-1 linear algebraic
equations in { unknowns S$uCyx, £ =1, 2,..., n. Equations (6.29) therefore
describe the relationship between these unknowns but do not determine
their actual values.

We make use of the following known property of determinants. Putting
|E,| for the cofactor of the element Ej, in the determinant |E*|of the square
matrix [E*||, we may write

i
ZlE,klEH:O for ket (6.30)
=

and

i
Z]Ejk]EM:[E‘] for k=t. (6.30")
~

Multiplying the two sides of (6.29) by | E}:| and summing over j from
j=1, to j=i, we find

P "
kzl j%IE;llEjkskakt=§1 jzl,EjllbitEjkskkckt- (6.31)

Making use of (6,30') we now write for k=!

x

i
E
SPDCDf = llEapll E Epkskkckp' (6.32)
k=1
In particular,
Et i
SuCy= ', Elil| EEtkSkakl- (6.33)
k=1

Dividing (6.32) through by (6.33), we find

§,,C | Ej,| .
oot __ 1770 © I=1,2 ..., 0. (6.34)
$,Cy A

We have obtained a relationship in which the nondiagonal matrix elements
are expressed in terms of the diagonal elements. Choosing the transfer
function SC from (6.29) and (6.34) we ensure the necessary and sufficient
conditions of noninteraction. The problem of noninteraction is thus solved
for the case when the number of inputs is equal to the number of outputs.

In our case, however, the number of inputs is greater than the number of
outputs, and we should further consider the choice of C’

To this end, noninteraction of the variables p=i+1, ..., n should be
ensured. Along the same lines as for y;, j=1, ..., i, it is proved /77/
that the noninteraction conditions for j=i+1, ..., n are satisfied if the
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transfer functions of the matrix C’ are chosen from the following relations:

i
, — Y| E,|E
835Csr _ 21515
S"'Cf,r ‘E‘I
((=1,.., i, r=i+1, i+2, ..., n.

(6.35)

Summing up, we write the conditions of complete (perfect) noninteraction
for any variable in the form

Cuf—_—'ov
where
p=i4+1, ..., n
t=1,2 ..., i
Cp=0,
p=i+1,..., n ®+r),
r=i41,..., n,
S;5C £
SVVCVV IEVV' !
where
htv=1,2 ...,
and
i
E L E
sjjcjr - kgll k}' kr
Srrcrlr IE‘I

(=1,2 ..., i, r=i+1,..., n).

This concludes our discussion of the principal results obtained by
Boksenbom and Hood. Further developments by Western authors are
mainly based on these results. We will not consider the methods of other
authors /81, 82, 78, 79/, since they are of no fundamental interest in
connection with the problem at hand. The main conclusion from the
preceding discussion of noninteraction conditions which is relevant for our
analysis of the problem is that neither the first {Voznesenskii's method)
nor the second (Boksenbom and Hood's method) approach discloses the
structural features of noninteraction, so that neither is suitable for
elucidating the structures in which noninteraction is attainable.

§ 6.3. NONINTERACTION AS A DYNAMIC PROPERTY
OF A CERTAIN CLASS OF STRUCTURES

We now consider multivariable control systems with controlled variables
interacting through the plant, where the nature of coupling is determined
by plant properties. The system comprises n variables, each constituting
a closed-loop control subsystem. We shall discuss a number of different
cases.
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Case 1. Controlled objects described
by first-order differential equations and
ideal controllers.

Let each controlled variable be described
by a first-order differential equation. The
2 controllers being ideal, their transfer
functions are structurally equivalent to
gain parameters for each variable, It is
clear from § 6.1 that this is the control
system investigated by Voznesenskii,

Each single-variable subsystem can
be replaced by a structurally equivalent aperiodic loop (see Figure 6.7).
The processes in this system are described by the following set of
differential equations;

FIGURE 6.7, The i-th control loop with
its individual controller,

[Tl‘;T‘F 1 + Kchl] N—+K, zauyz =KKerV 1+ Kify
i=2

.......................... (6.36)
d n-1
(7w g 1 KaKen] Vat Ky 2 0uiY s = KK o s+ Kifn

i=1

where T; is the time constant of the plant in relation to the i-th controlled

variable, K; the plant gain in relation to the i-th variable, K.; the controller

gain for the i-th variable, ay coefficient of coupling between i-th and k-th

controlled variables. Here aa is a function of plant properties; it may be

a constant or a function described by a differential equation.
Laplace-transforming equations (6.36) and assuming zero initial

conditions, we obtain

T+ 14+KK. Y, (p)+Ki‘_§laik (DY (D)=
i£k
= KKV et (P) + Kif1 (D) (i=1,2,..., n). (6.37)

To prevent loss of generality, the coupling coefficient is written as a function

of the operator p. Dividing the ;-th equation by K.; and putting KLt=m, we find

[m; (T.p+ D4+K1Y, (P)+mK, kgl (D), (p)=
ki
=KY it (D) +mKfi(p)  (i=1,2 ..., n). (6.38)

Let us first consider the case au(p)=ai = const. If the controller gains
are sufficiently large, i.e., K—oo and m;—0, we see from (6.38) that in the
limit the i~th controlled variable depends only on its reference value ¥, (p)
and is independent of all other controlled variables. Increasing the gain
of each subsystem, we uncouple the various controlled variables in the

sense that, to accuracy of m,=—Kl—c1, the controlled variables no longer

interact with one another; we have thus achieved noninteraction to accuracy
m;. This conclusion, however, does not mean much if not supplemented
by information on system stability.
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If all m; are of the same order of smallness, the characteristic equation
is written as

m(1+4Tp)+ K mK,a,, mK\0yp
Kamasy m(Top+1)+Ke ... mK 0y =0. (6.39)
mK mK y0ps e m(14Tyup) 4+ Kl

It is expanded to the form
miF,(p)+m"'F, (P + .. +Fo(p)=0,

where the subscript of F indicates the degree of the polynomial. It follows
from Chapter Three that the system is stable as m—0 if and only if the
degenerate equation Fo(p)= 0 and the auxiliary equation (of the first kind in
this case) each satisfy the respective stability conditions. Here it clearly
suffices to test for stability the auxiliary equation only. After simple
manipulations it takes the form

LIl(Kl—f—T,-pm)z_—O. ' (6.40)

This is a product of n factors each characterizing an independent
damped process for the corresponding controlled variable. The system
is thus stable.

The roots of the auxiliary equation are

K,
p=— m;l, (6.41)

which shows that high gain ensures high system stability, i.e., high-speed
response, as well as high steady-state accuracy and noninteraction.
Moreover, high gain "suppresses' the external disturbance fi. In this
case noninteraction is supplemented by excellent dynamic properties of
the system as a whole.

The results also admit of a different interpretation. Suppose that we
are interested in improving the dynamic properties of the system. To
this end the subsystem gains are increased. Since Fo(p) in this case is
a certain constant, the system dynamics at sufficiently small m (large Ke:)
is completely determined by the properties of the auxiliary equation. It
is clear from the expression for the roots of the auxiliary equation
(relation (6.41)) that the smaller the parameter m; the faster is the transient
response of the system, i.e., system dynamics is improved by raising
the subsystem gains. At the same time uncoupling is achieved and the
process is separated into n independent (noninteracting) processes.

Noninteraction is thus derived as a dynamic property of the system
at high gain, regardless of whether we are concerned with this particular
aspect or not.

Case 2. The plant and the controller are described by first-order
differential equations in each controlled variable.
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Kes uf Figure 6.8 is the structural block

p T p +np p diagram of this case. The plant and
ref I / the controller are represented by
2 > }-)_ aperiodic elements with time constants
Do, T, and 7; and gains K; and Ky. Assuming
;fg{ zero initial conditions, we write the

following set of equations in Laplace

FIGURE 6.8. The i-th control loop with a !
P transforms for this system:

controller described by a first-order equation,

[(1+ Tup) (1 + Tip) + KiKe ] Vi () +Ki(1 4 Tip) Z 0 (p)Y u(p)=
bkl
=KK. Y : O)+K(+T:0)}(p) (=12, ..., n). (6.42)

Dividing each equation in (6.42) by K.;and putting KL‘=m,-, we obtain

[m: (14 T:p) (1 + Tip)+ KiY (p)+ muKi(1 4- TQP)’;:’:‘M &)Y x(p)=
k£l
=K1Yrefl(p)+mKi(1+Tip)fi(p) (i=11 2) ey fl). (6.43)

Here we also take aum(p)=as(0). For m;—0 the degenerate part of the
set separates into n independent zero-order equations, i.e., structurally
the control system is representable by # noninteracting subsystems.
To find the 2n roots which recede to infinity as m;—0, we have to
test the auxiliary equation for stability. If all the m, are of the same
order of smallness, the characteristic equation is finally written in the form

m"Fau(p)+ m*=1Fy_y (D) + ... +Fo(p)=0, (6.44)

where the subscripts of F indicate the degree of the corresponding
polynomial F(p).

It is clear from (6.44) that we will be dealing with an auxiliary equation
of the second kind in this case. The auxiliary equation is constructed
following the procedure of Chapter Three. Aftér some manipulations,
we write it in the form

[T {0+ Tig) -+ Tig)+ Kl =0. (6.45)

Since T, T:, and K;are always positive real numbers, equation (6.45)
satisfies the stability conditions. From (6.45) we also see that the
transient response of the system consists of n mutually independent
transients corresponding to independent, noninteracting variation of
the n controlled variables.

In this more complex case, noninteraction of the individual controlled
variables is attained by increasing the subsystem gains.

As in Case 1 we have assumed that K¢ are all of the same order of
magnitude and can be put equal to one another. This is an inconsequential
restriction, since the controller gains can be adjusted accordingly. If,
however, the controller gains are different, they are all represented by
a single combined gain factor (as in Chapter Three). The rest of the
analysis proceeds along the same lines as before, i.e., an auxiliary
equation is drawn up, its coefficients incorporating the proportionality
coefficients introduced, and is tested for stability.

157




Without going into the detailed manipulations, we note that the preceding
conclusion concerning noninteraction attained by increasing the subsystem
gains remain valid in systems where the controllers are structurally
representable by integrating elements [39/. For noninteraction, however,
there is no need to impose any restrictions on the time constants of the
integrating elements (servomotors), as is done, e.g., in /52/.

Case 3. Noninteraction with ideal derivatives.

Consider the general case, when the plant is described by an i-th
order differential equation in each controlled variable, and the unstabilized
controller by a j-th order differential equation.

High-gain stability is ensured by introducing n-2 derivatives (n=i+j)
into each subsystem according to the rules derived in Chapters Three
and Four.

Let Di(p) be the self-operator of the plant, M;(p) the self-operator of
the controller, K.; the controller gain and K; the plant gain, all in relation
to the i-th controlled variable,

We proceed to derive a set of equations describing the control processes
in this system.

The plant equation for the first controlled variable is

D,(P)X,=K1<X{"l§2‘luxi+f1>~ (6'46)
The controller equation:
Mp) X, =Kc,[Xm{—Xl—(alop"'_2+a11p"‘_3+. coAa,1p) Xl (6.477)

Inserting for X; in (6.46) its expression from (6.47) and proceeding to
derive equations for the other controlled variables, we finally obtain
D\(p) Mi(p) + KiKer(@yopm =2 +-app=2 4 ...
voe 4y 1D+ KafGVY -+ KM, (p) %allyl =

= K,KY 1ot + KiM, (D) 1s
....................... (6.48)

n—-1
ot lnan P) KK Vot KM () B0l =

=KncKnYmel+KnMn(p)fn’
where
n=o +pu,
Rp=0,+ W,

For sufficiently large K.:the equations in (6.48) degenerate to mutually
independent equations. Thus, for K¢~ o, the i-th equation takes the form

Kilawp" "+ anp™*+ ... +ai,n—1pk+KI] Yi=KY . (6.49)
The left-hand side of this degenerate equation is a product of factors

which constitute the left-hand sides of the degenerate equations of the
individual controlled variables.
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To establish stability for m—0, it remains to test the auxiliary equation
of second kind. It is also independent of the coupling coefficients a.

We thus come to the conclusion that if ideal controllers are used in
systems which remain structurally stable at arbitrarily high gain,
noninteraction is a dynamic property of the system; the degree of non-
interaction increases as the corresponding gain is increased, As regards
the quality of control, we see from (6.49) that the degenerate equation,
which determines quality, is entirely dependent on the stabilizer parameters.
The latter can obviously be chosen so as to ensure required quality.

In what follows we will consider systems where noninteraction cannot
be attained by increase of gain alone: the structures should be additionally
modified to ensure noninteraction.

§ 6.4. ISOCHRONOUS SYSTEMS

Isochronous systems use an isochronous stabilizer. This is an elastic
feedback element having the transfer function

Xouw (P) T
X (p) ~ 1F71p° (6.50)

This transfer function is characteristic of mechanical isochronous
stabilizers (with negligible piston mass), as well as stabilizing transformers,
RC elements, and other control elements widely used in practice.

Hei Ky

77 p 1*7:p

FIGURE 6.9, The i-th control loop with an iso~
chronous controller,

Figure 6.9 is a block diagram of an isochronous system: the elastic feed-
back loop embraces the controller, which is structurally represented as a
single aperiodic element. Using the nomenclature of Figure 6.9, we write

{0+ TP [+ Teup) (- 500) - Kageup) Kok (L + 5300} ¥4+
KA+ Tap) 0+ 59+ Kol 3ot —

RO A RA A Tap - Kawelhe |6 g

(1 4+ Tp) 1+ Teup) 1+ TuPHKer] + KoKon (1 5,2 Yy
+ K1+ Te,p)(1 +'vnp)+Kcnf,.p]gamY1 =

= KK ) Vg Ko 0 502) (L Ton)+ Kersapl
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It is clear from Figure 6.9 that the subsystem gains can be increased
indefinitely by increasing the corresponding controller gains,

The system as a whole is stable if the degenerate equation and the
auxiliary equation each satisfy the stability conditions.

To explore the possibility of noninteraction, we divide all the equations

in (6.51) by K.;. Putting '7'<lc—l=m, and assuming all m; to be of the same

order of smallness, we draw up an auxiliary equation (it turns out to be an
equation of the first kind in this case).
After simple manipulations, we obtain the auxiliary equation in the form

a+7.0=0 (6.52)

It always satisfies the stability criteria and is independent of the coupling
coefficients.

Let us now consider the degenerate equations. Dividing (6.51) by K.; and

uttin m= = 0, we obtain the following set of degenerate equations
p g Kci g g

[ TP mp+ Ke (4 5 Vit Kisup 3 ol =
— K, (141,9) Yyt Kimuhr

(A Top)tp+ Ky (1 - 0p)] Yo+ Kotop é“a 0y Y =
— Ky(1 +10p) Yyt Ketaphy

(6.53)
s e e e e e e e e e e e e e n._l. Coe
[(1 + Tnp) Tnp+Kn(1 ~+ 1np)] Y.+ Knrnptgllaniyi =

=Kn(1 +Tn.p) anef+ Knrnpfn'

Each equation in (6.53) contains terms which account for the interaction
of the various controlled variables. Noninteraction thus cannot be ensured
by simple increase of the gain alone.

To ensure noninteraction, the structure is modified as follows, The
sum of all variables, with the exception of the variable corresponding to
the particular controller, is additionally delivered to the input of the
isochronous stabilizer of each controller. The system behavior is thus
described by the following equations.

First-variable plant equation (see Figure 6.9):

(1+T,p) Y1=K1[Y§+i§2au1’+f1]- (6.54)
Controller equation

. T /
(1+Tc1.”)y1= Kc] I:Y!rcf_ Yl_ﬁyﬁ—;}%}auyt]' (6‘55)
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Inserting for ¥y in (6.54) its expression from (6.55) we find
{(A+T.p) (1 4Ty p) (1 + 7 p) + Kovypl + KK (1 + 1y p)) Vi —

— K [(14+Typ) (1 +T1p)+Kclrlp]%aliyl—l_KchlTlp g‘l?“u i=
= KKer (14 7.0) Vit Kofy [(1 -+ Terp) (1 +00)+ Koyt ] (6.56)

Similar equations are obtained for the other variables. For the k-th
variable we thus have

{1 +Tp) (1 =+ T ) 1 7 p) + K p7ppl +Kk£(ck (A47p) Y —
— K [+ Teowp) (1 1o p) + K0l IEZI oY+
itk

+Kchkapl=Zl 0V =K Koy (L1, 0) Yy o+
+ Kuf o [(1 + T p) (1 F-720) + KesTrpl- (6.57)

Dividing each equation in {6.57) by the appropriate K.; and taking mi=—1-<cl—l

to be sufficiently small, we obtain a set of independent degenerate equations
for each controlled variable. Thus, for the k-th controlled variable,

[(I+Tep)Tep+ K P+ D]Y e = Ky (L0 0) Y poos =+ Ky Wi 5f e (6.58)

This equation describes an independent, noninteracting process in the
. k~th control loop. This process is independent of the other controlled
variables.

Comparison with the results of the previous sections shows that,
whereas in the preceding structures increase of gain ensured noninteraction
and simultaneous rejection of external disturbances, noninteraction in
a system representable by equation (6.58) is not accompanied by disturbance
rejection. This important property will be investigated in what follows
during a detailed analysis of noninteraction and invariance.

§ 6.5. NONINTERACTION IN THE GENERAL CASE

Let us consider noninteraction in the general case of a system with
n interacting variables which remains stable as the individual gains are
increased indefinitely. We assume that each control loop is stabilized
Fnl (p)
Fomi(p)
controller with the self-operator M;, (Figure 6.10).

Let D;(p) be the self-operator of the plant in respect to the i-th controlled
variable, M; . (p) the self-operator of the stabilized section, M; 4, (p) the self-
operator of the unstabilized section, Ki«, the gain of the unstabilized section.

It is easily seen that in this case, as in § 6.3, gain alone does not
ensure noninteraction. We do not prove this proposition, as it partly
follows from the results of § 6.3, where the stabilizer transfer function .

is a particular case of the function 7{"#-.
m

2]

by a device with a transfer function which encloses part of the
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Let a sum of disturbances > a,,Y, be additionally delivered to

k=12, .., ..n

the input of each stabilizer. The system is thus described by

{Di(P) Mi 4o (D) My & (P) Fri(0)+ K o Fru (P14
+Ki st KidegKile(p)] yl=KiKl st Ki degle(p)Yiref_
—KiM; 4 Ky o Fui(p) glalkyk_’_
+ KM, aeg (D) M, o (D Fmi(p)+ K, o Fulp) E]ailzyk"l'
HKM; 45 (D) [M; o (D) Fri (D) + K, o Fai (D) s (6.59)

where n=1,2,..., .

,(i'deg ”l'sr
”i deg‘(p} "’1 st /}7)

~-5 g

N

hilo) | 2
Fot @1 | E%in Ve
¢

FIGURE 6.10. Illustrating the derivation of noninteraction in
the general case of a lagless plant,

As we have already indicated, the stabilizer transfer function and the
stabilizer connections are chosen so that the system remains stable
despite indefinite increase in gain. K, may therefore be increased
indefinitely in each subsystem. The entire system will be stable if the
degenerate and the auxiliary equation each satisfy the corresponding
stability criteria,

Let K;, be sufficiently large. Dividing each equation in (6.59) by K«
we find that for sufficiently small mi=ﬁl“—the system separates into
n independent equations, each describing one controlled variable only.

The stabilizer input in this case is thus the sum of all extraneous
controlled variables, which implies noninteraction for K « — oo.

It is clear from the preceding that if the noninteraction conditions
are satisfied, each subsystem can be selected and investigated independently
with the aid of the well-known methods of the theory of single-variable
control systems.

It should be emphasized that the accuracy of the results is conditioned
by the order of smallness of m. The smaller the parameter m, i.e., the
higher the gain K,, the more accurate are the results.

In practice, if all the other system parameters are known, K,, is
readily chosen by the methods described in /39/.
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The analysis of this section leads to the 1ollowing conclusions.

(a) Multivariable control systems which retain their stability at any
(including arbitrarily large) gain can be reduced to noninteracting systems.
In the general case noninteraction is attained by increasing the correspond-
ing gain K;« and simultaneously delivering to the stabilizer input the sum
of disturbances from all the extraneous variables with proportionality
coefficients a.

(b) The methoas of the theory of single-variable control systems are
fully applicable to the design of noninteracting multivariable systems
and to the choice of system parameters.

§ 6.6. NONINTERACTION IN SYSTEMS WITH LAGS

In our discussion of stability of lagged systems the input variable of the
time-lag element was assumed to be zero during the time from (= -1 to
t=0. This assumption is valid, since in linear systems (with which we
are concerned) stability is independent of the initial conditions. However,
in the general case, zero initial conditions are inadmissible in systems
with lags. The system equations should therefore be written for nonzero
initial conditions.

We consider the following cases: {a) high-gain stability is attained
by introducing ideal derivatives into the systems, and (b) high-gain stability
is attained by introducing real derivatives.

/r
m fi P/ m

"LT—ij—rDl—-—bf—--—

FIGURE 6.11. Illustrating noninteraction in the general
case of a lagged plant,

Let us derive the equation of the i-th subsystem for case (a). Figure 6.11
is a block diagram of this case.
The plant equation ignoring time lag is
Dl(P)yl=KI[xz+Za1kyk+fll' (6.60)
The equation of the lag element
Yi=VYi(t—v). (6.61)

The controller equation

R x;=K V=Y, @+ ap+ ... +a, yp+1)] (6.62)
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where ‘
@GP tapt it o e, p =F(p),

and n=D+R is the overall order of the differential equation describing
processes in this subsystem.

Laplace-transforming equations (6.60), {6.61), and (6.62), we obtain
the plant equation

D, (Y, =K;[x,(p)+ DoV, (D) +[,(0)]+ D, [P, %,0), V0] (6.63)

the lag equation

0
Yi =eTPYi(p)+ [Yie” dt=eTVi(pD)+%(p), (6.64)

-

0
where ¥, (p)= fx;e-l”dt accounts for the initial conditions during the time
-1
from £=—-tto £=0,
and the controller equation

Rip)x;(p =K [V er:— Y (D) (@op" 2+, p" 2+ ...
oo F8uosp+ 14 Ru [P, Y4 (0) %1 (0)]. (6.65)

In (6.64) and (6.65), D,; and R.; are contributed by the initial conditions
for ¥; and X;, respectively. Solving equations (6.63), (6.64), and (6.65)
for the Laplace-transform of the controlled parameter, Y;(p), we find

D, (p) Ri(p)e*+ KK, (aop"a,p" 3+ . .. 4a,_sp+ )Y (p)+
C KR (p) Dy s (p) e = (KK Y e+ Kb (p) (@opm 2+
+apri oo+ D KR [P, Y(0), Yi(0) ... ]+
+KR, (D), (P +R, () D[P, Y, (0), Y}(0) ...]) er. (6.66)

Dividing the two sides of (6.66) by K.; and taking K.; to be sufficiently large,
we find -

mD, (p) R, (p)e™? + K (@op™ 2 +a,p" %+ ... +1)Y,(p)+
+ mK,R, (p) Da,Y, (p)er? ={K1yircr+mKi’~P(aoP"_2+
+ap'+ ... 1)+ mKiRa [pxi 0), x1(0)...]+
+ mKR,(2) [, (D) + mR,(p) D, [P, Y, (0), ¥;(0)...]} e (6.67)

First let us consider the effect of nonzero initial conditions. We assume
that during the time from -+ to 0 the function Y, and its derivatives have
finite values; we moreover assume that at the time ¢= 0 the function x(0)
and its derivatives are also finite., Equation (6.67) then shows that as K
increases, the effect on the transient response of the initial values of Y
and ¢ and of their derivatives diminishes, dropping to zero in the limit.
However, a distinctive feature of this stabilization technique (introduction
of ideal derivatives to the system input), as is seen from (6.67), is that
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in the limit, when m—0, the equation becomes lagless, the leading term
vanishes, and instability sets in. Introduction of ideal derivatives to the
system input is thus inadmissible for purposes of attaining high-gain
noninteraction. ' '

This conclusion is fairly obvious without a formal proof. Introduction
of ideal derivatives to the system input is equivalent to stabilizing the
entire system with a stabilizer

) T R T2

This system is unstable as K., — oo, since the stabilizer embraces the lag
element as well, o

It is significant, however, that the initial conditions, as long as they
are finite, do not affect the fundamental properties of the system. In
what follows we therefore omit the particular initial conditions.

Let us now consider the case when the ideal derivative is so introduced
that the system remains stable in the limit despite an indefinite increase
in the gain of the stabilized section.

For the j-th subsystem we have

[Dl (DIND) Qi (p) e +K;  Di(PIN (D) F i ()P 4K o, ]y1+
+KAN (D) Qi (D) +Ki o Ni(P) Fuy(P)} DayY =
=[N, (p) Q; (P)+ KK, o Ni(P) Fuy (D)) jrert
+N(P) Qi (D) + K, « Ni(P) Fri (D) s (6.68)

where K,' ot =K1KN,‘K1 st e

The order of the highest ideal derivative entering the expression for
Fn:(p) is chosen so as to ensure stability with arbitrarily large K, .

We divide (6.68) by K, , and put K; , >co. The degenerate equation
takes the form

(D) N (p) Foi (p) € + K o 1Y 1+ ,
KN (p) Fo (p) 204V s =K, or Yieto = Ni(D)YFp (D) i (6.69)

It is clear from (6.69) that noninteraction cannot be ensured simply
by increasing the gain K, , since the degenerate equation contains a term’

Ny (p) Fni (P) 2 9 @9
k=1,2 ..., i-1, 1+l n
and the process is consequently dependent on the contribution from all the
other controlled variables. '
Noninteraction is attained by proceeding along the same lines as with
lagless systems (6.2), Signals of the form

Y o, (6.70)

k=12, ..., n
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are delivered to the stabilizer inputs. The set of equations for the first
subsystem is written as

[D1(p)N1 (p) Q. (P) v+ K, « DI(O)N(p) Fy (PP K o |V +
+ N1 (D) Qu(P)+ K, o« Ni(P) Fry (7] g2alkyk -

—K; « NI(P)Fm(P)E?auyk=

=Ki[N,(0) Q (D) + Ky o« Ny (D) Foy (DY gt
+INUD) QD)+ Ky o Ny (p) For ()] fr. (6.71)

Similar expressions are obtained for the other subsystems: it is only
necessary to substitute the appropriate subscript for 1 and to omit it from

n
the sum Z .
~

=2
Dividing (6.71) by K,, and putting K, , —»c0, We obtain the degenerate
equation

Dy (D) N, (9) F (P) €=+ K, 1y |V, =
=K1’Nl(p)Fnl(p)Ylmf+N1(p)Fn1(p)f1' (6'72)

This equation is independent of wx;.

We thus conclude that introduction of an additional signal (6.70) to the
stabilizer inputs in conjunction with an increase in the gain K;, ensures
noninteraction of the individual subsystems in a multivariable control
system with lag elements. It is of course implied that the conditions of
infinite-gain stability are satisfied.

In conclusion let us consider a case when stability at infinite gain K,
is ensured by real stabilizers in the system,

The transfer function of the stabilizer in the i-th subsystem is

Fur(p)
Fri (p)

Acting along the same lines as in the preceding we readily show that non-
interaction can be attained by indefinitely increasing the gain of the stabilized
n

section in the i-th subsystem if an additional signal Zaik)’,, is delivered

to the stabilizer input (the subscript & takes on all the values except i).
The noninteraction criteria of the previous sections are thus extended to
systems with lag elements as well. Note that noninteraction does not
ensure automatic rejection of external disturbances in this case either.

§ 6.7. INVARIANCE PRINCIPLE

In invariant control systems the generalized coordinate of the system,
in particular the controlled variable, is independent of the external
disturbances. They are therefore also called systems with rejection
of external disturbances.
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" In multivariable control systems the problem of invariance is substantially
complicated by interaction between the various controlled variables, which
is superimposed on the external disturbances, There is, however, a
fundamental difference between the effect of external disturbances and the
effect of coupling in the system: external disturbances do not affect the
stability of the system as a whole, whereas the coupling coefficients,
or in the general case the coupling operators, have a substantial influence
on system stability.

To elucidate the problem of invariance, we first consider a three-
variable system and then extend the results to the general case,

1. A three-variable system

Consider a system with controlled variables interacting through the
plant. Analysis of combined control systems has shown that the external
disturbance, if appropriately channeled into the system, can make the
controlled variable independent of external disturbances. The feasibility
of this rejection procedure follows, say, from the Poncelet principle of
load control, It is therefore interesting to consider this problem in
application to control systems operating on the Watt — Polzunov principle
{(control by deviation),

The equation for the controlled variable Y, in this case can be derived
from (5.22) putting

B:x=0, ©,=0and 0,,=1 (i#k i=1, 2, 3). (6.73)
Making use of (6.73), we obtain from (5.22)
3
1 1
Vim= g DD Ak r+ o DD Ayl dy+ N, (6.74)
k=1 i=1
where
an 4+ Ke by e+ Kedu)wy (6 + Kediy) ags
A3 = (ca+Kcada)0sy s+ Kegba (cas+ Ko odgg) 0gg |, (6-75)
(cas+Keada) @ (co3 Keadsg) @gz 245K sbss
| @2t Keabe (€33 + Kc sdss) @35
“ (cos+ Kcodp) 033 0334 K 335
| en+Kerduyayz  (es3 4 Ke odss) 05,
An= Ccu+Kerdu) s 0s3+ Keabss (6.76)
A= (en+Kerdi)ay @y Kegba
B (e + Ko rdi) og (Caa+Keadag) agy |
Here
ay=Q,RFpmD,
bu=M1K1sz+DzQann
d,;=K,Q/,F n (6.77)
Ly =KMFy,

Ny=KQRF .
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To reject all the external disturbances, the coefficient of f; should be
made equal to zero, i.e.,

(=D ALK 4, +N, =0 for i=1, 2, 3.
This coefficient is made up of two factors:
A and [K.d;+Nyuj=0. ‘ ,(6.78‘)

Consider the first factor, A;. It is clear from (6.74) that the condition
Ay =0 is equivalent to rejection of the entire control system, since elimina-
tion of the external disturbances simultaneously eliminates all the reference
values Y.x and we no longer have a control system, Furthermore, if
all A are zero, the denominator vanishes and we arrive at the identity 0 =0,

Here lies the main error of G.V. Shchipanov who proposed control by
deviation for the realization of the fundamentally sound idea of disturbance
rejection that he had developed. It is not only that a zero identity is
obtained: a more significant fallacy is that by rejecting the external distur-
bance in this way we simultaneously eliminate the reference values and thus
destroy our control system. Moreover, in deviation control systems,
on passing to the limit A;=0, we must investigate the stability under
arbitrarily small deviation from equality, i.e., test the system for coarse-
ness in the sense of A.A. Andronov. :

Now consider the factor (K..d;,+N,). Inserting for d;; and Ny their
expressions from (6.77), we find

K. dy+Ny =K,Q; [Kchnl+RiFmi] =0,

or
Kci . le

= (6.79)

Let us elucidate the physical meaning of condition (6.79). It iz easily
seen that (6.79) calls for the introduction of ideal derivatives. Indeed,

K.: is a constant positive quantity, R; is the controller self-operator. Fpi,
the self-operator of the stabilizer, is thus clearly a constant number,
whereas the stabilizer numerator F.; must be precisely equal to the
controller self-operator R;(p). We conclude that in this case control

by deviation in principle cannot ensure complete
{perfect) rejection of external disturbances. Disturbance
rejection is possible only to an accuracy of some &, and the equation should
be investigated for coarseness.

Various techniques ensuring invariance have been proposed in the
theory and practice of automatic control /14, 26, 27, 29, 51, 56/. We do
not intend to discuss each and every of these methods; only the most typical
cases will be considered, with particular reference to their advantages
and, possibly, shortcomings. Note that condition (6.79) is not the only
one that ensures invariance; moreover, this is not the best policy for
obtaining e-invariance of a control system.

The point is, that a stabilizer is incorporated in the system to ensure
stability and provide certain dynamic properties. If the stabilizer is
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chosen on the basis of condition (6.79), it is by no means clear that it will
meet the required performance characteristics as far as system dynamics
is concerned. A better solution is to tackle the problem of g-variance
simultaneously with the problem of stability and system performance.
We have considered the particular case of a three-variable system, but
the results are obviously valid in the general case of ncontrolled variables too,

2. Application of local positive feedback to ensure invariance

We will now consider some instances of invariance ensured by local
positive feedback. Our interest in these methods stems not frocm their
practical significance but from the fact that they provide an excellent
opportunity to warn the reader against various fallacies and erroneous
conclusions that may lead to undesirable results.

Figure 6.12 is a block diagram of the system analyzed in /29/. Using
the nomenclature of Figure 6.12, we write

1
Y=o (thes — X+ 1),

232

zé;;y, (6.80)
V== 20y,

1
X=(a13!/+f(!7))ﬁ-
Solving (6.80) for x, we obtain
@183 (AnyfTy — Gpollog) ~+ Qaag] X = Biallagtt ves + (Aoaaqr — Gnatts) f (D). (6.81)
This is a single-variable control system, and the invariance conditions
can be determined without considering the general case of a multivariable

system., The particular results, as always, can be easily generalized to
the case of n controlled variables.

@2/

L=

FIGURE 6.12. Illustrating the conditions of disturbance rejection.

We see from (6.81) that the controlled variable x is independent of
external disturbances if

Qgallgy — Ggpllzy =0. (6.82)
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Let the parameters be chosen so that identity (6.82) is satisfied. It is
readily seen that the system is noncoarse for perfect invariance, whereas
for e-invariance it is realizable only if certain additional conditions are
imposed. Indeed, the degree of the polynomial a;iais(asas — axpay) is always
higher than the degree of the polynomial aja;. Under these conditions,
an arbitrarily small departure from identity gives rise to roots which
recede to infinity; the number of these roots is determined by the difference
in the degrees of the polynomials

11013 (Bl — Aplyy) aNnd  @pay,.

If the new terms introduced by departure from identity have a minus sign,
the system is unstable irrespective of this difference. Perfect invariance
is thus unfeasible, since, in view of the possible appearance of terms
with negative coefficients, the system is not coarse in the sense of
A.A. Andronov,

Let us now consider the case of e-invariance. The question can be
discussed at all only if :

Qoyllgy — Qoolay > 0. (6.83)
However, if (6.83) is satisfied and also

Anlgy — A3y < 8,

the system is realizable only if the difference in the degrees of a;1a;3(aass — az0033)
and ap;as; is not greater than two and the degenerate equation

Ayt =0 (6.84)

meets the stability criteria, Furthermore, the additional requirements
described in Chapter Three should also be satisfied. In other words, the
realizability problem reduces to the design of a structure which remains
stable at infinite gain.

3. Invariance via feedback

Let us consider another method, which ensures invariance with the
aid of internal feedback /20/.

Figure 6.13 is a block diagram of a control system,where invariance
in relation to the disturbance e(¢) is attained by introducing local feedback
with appropriately chosen transfer functions. The exact character of the
local feedback will be decided at a later stage. Meanwhile, taking all the
feedbacks with the plus sign and using the nomenclature of Figure 6.13,
we obtain the following set of operator equations:

Ui(py=Z,(p) X(p)+Z2(p) Us(D)+ Z3(p) Uy (2)+ Q (p), (6.85)
U, (p)= W, (p) U, (p), (6.86)
Uy (p)= W, (p) U,(p), (6.87)
U(p)=Us(p)+e(p) (6.88)
X (p)= W, (p) Us(p), . (6.89)
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where X(p) is the Laplace transform of the controlled variable, e(p) the
transform of the disturbance, W;, W, W; Z,, and Z; are the transfer functions
of the system elements and the local feedbacks. The system is designed
according to the Watt —Polzunov principle, and so Z,;= -1.

FIGURE 6.13. Illustrating the derivation of disturbance rejection
conditions with the aid of positive feedback.

Solving equations (6.85) —(6.89) for the transform of the controlled
variable X(p), we find

W)W () Vs (1) QD)+ W (D [1 =W, (9) Zs ()] & (p)
XPO= =W, () Z: DL WV, (1) W2 (0) Vs (D) — W, (9 W (7) Z: () (6.90)

In order for the controlled variable x(f) to be independent of the distur-
bance e(f), the coefficient of e(p) in (6.90) should be equal to zero, i.e.,

1— Wy (p) Z,(P) =0, (6.91)
or ‘

Zy(p)= Wll(p) . (6.92)

If the transfer functions are represented as rational-fractional functions
of the operator p, then putting

— Fna(p) __Ki(p)
Zs(p)—‘[:m:—(‘,) and Wl(p)— D:(p) ' (6-93)
we find
Fu(p) __ Di(p) (6.94)

Fas(p) — Ki(p)*

Note that a similar condition was derived in the preceding subsection,
where invariance was achieved via local positive feedback. The feedback
with the transfer function Z; should apparently be positive in this case,
too; moreover, for the real components which make up the basic elements
of control systems, the degree of the denominator D;(p)is greater than the
degree of the numerator K;(p). In most cases, Ki(p)is simply the gain,
i.e., a constant positive number., We thus again arrive at the requirement
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of local positive feedback with ideal derivatives., In other words, nothing
new has been hitherto derived in addition to what we considered in § 6.4.

Let us now consider the stability of this system and test it for coarseness
in the sense of Andronov. We put for the transfer functions

21 ("’ - 22([7) ! (6'95)
= - il

The characteristic equation needed for stability analysis is obtained
by putting the denominator in the right-hand side of (6.90) equal to zero.
Making use of (6.95), we write for the characteristic equation

[1 __ Fulp) K (ﬂ)]+ K (DK (P Ks(p) K (P)Ka(p) Fro(p) —0
Fms(2) Di(p) Di(pyD2(0) Ds(p) Dy (p) D3 (p) Frua(p)

or

Dy (p) Dy (p) Ds () Fpa(p) [1 — 28 1AL T 4
+ K1 (9) K (9) K () Fa () — K1 (2) K (P) D (p) Fop () =0, (6.96)

It is clear that the system degenerates whenever condition (6.94) is
satisfied, i.e., if

1— FnS(p) K!(p) =0
Fms(p) Dy (p) !

since the degree of the polynomial before the expression in brackets

| — Fu@) Ki(p)
Fus(8) Dy (p)

is greater than the degree of the other polynomials in (6.96).
Let condition (6.94) be satisfied exactly. The degenerate equation is

— K (D) Ky (p) Dy (p) F oo (D) + K, (p) Ko (p) K3 (D) Frug (p)=0. (6-97)

It is clear from (6.97) that if the transfer function Z, corresponds to
positive local feedback (i.e., the signs are all as in equation (6.97)), the
system is unstable. This conclusion is obtained from the following con-
siderations. The first term in (6.97) is of higher degree than the second
term. By results of Chapter Three the coefficients of the leading terms
in the complete and the degenerate equation should have the same sign.
Hence follows our first conclusion that the local feedback with the transfer
function Z, is negative. The degenerate characteristic equation thus takes
the form

K1 () Ky (D) Dy () F oo (D) ~+ Ky (D) Ky (8) Ky () F g (P) = 0. (6.98)

The conclusion concerning the feedback ratio Z, has been previously
reported in /20/ and it is by no means new. We give it here only for the
sake of completeness and consistency. » Let us further assume that the
parameters of the degenerate equation are so chosen that they satisfy
the stability conditions. It is readily understood, however, that in the
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case of perfect invariance the resulting system is not coarse in Andronov's
sense and it is thus inadequate.

Indeed, suppose that the system departs from condition (6.94) by an
infinitesimally small quantity. This gives rise to a small parameter which
obviously may be either positive or negative. A negative parameter
generates at least one right-half-plane root. In the case of. perfect
invariance we thus end up with a noncoarse, i.e., unrealizable, system.

It now remains to consider invariance in the case

Fup) D) _ 0. (6.99)

€2 Frs @) Kilp)

The characteristic equation is

mF o (P)+ Fpi () =0, (6.100)

where

Fo(p) =D (p) D3 (p) D3 (P} Fpo (2
Fri(p) =K (p) Kz (p) D3(p) Fra(P)+ K1 (p) Kz (P) K3 () F o (P)-

This system is realizable if it is structurally stable at infinite gain.

In other words, we have proved that perfect invariance is unattainable in
this way, while e-invariance can be achieved only if the structure of the
system has infinite-gain stability and the necessary and sufficient conditions
of Chapter Three are satisfied.

We will not go into the corresponding results for multivariable control
systems, since this would involve repetition of our previous discussion
(see Chapter Three) of systems with infinite-gain stability. In conclusion
of this section we will consider the properties of multivariable control
systems based on the Watt —Polzunov principle, with the controlled
variables interacting through the plant. It will be clear from what follows,
however, that the nature of coupling is in general dependent not only on the
properties of the plant but also on the structure of the control system itself,

To establish the dependence of coupling on structure, we divide the
control systems into a number of structural groups according to the
following signs:

(a) systems made up of one-loop single-variable subsystems;

(b) systems made up of one-loop single-variable subsystems with
derivatives of from (n —2)-th to the first order inclusive delivered to the
input (the system can be made stable when the subsystem gains increase
indefinitely);

(c) systems made up of multiloop single-variable subsystems.

Let us consider each of these groups separately.

(a) Figure 6.14 is a block diagram of the control loop for the i-th
variable. This structure is described by the following operator equation:

1D, (PIRAP)+ KK )Y+ KR, (P)%“ikyk =KKotVeeri + KR, (P) fis (6.101)

where D;(p) and K; are the self-operator and the gain of the plant in respect
to the i-th variable; R;(p) and K., ditto for the controller; a. the coefficient
of coupling between the i-th and the k-th variables, determined by plant
properties; Y;.; the reference value of the i-th controlled variable; f; the
load in the i-th loop.
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We see from (6.101) that the coupling between the individual controlled
variables depends not only on the properties of the plant (the coefficients
as and K;), but also on the fundamental properties of the controller, For
the sake of convenience, we divide (6.101) through by K.:

[%5 D) R P+ K]V i+ R R (p) ;kamn = KX+ - R (6.102)

The degree of coupling increases as K; is increased and decreases as
the controller gain K.: increases; moreover, the dynamics of coupling
depends on R;(p). We also see from (6.102)
that the interrelationship between the
controlled variables can be made arbitra-
¥% rily small by appropriately increasing the
r— controller gain K.;, provided, of course,
that the system remains stable in the
process. If in the class of structures
being considered D;(p)R;(p) is of higher
than second degree, the critical gain Kei .
FIGURE 6.14. Disturbance rejection con- should have a finite value, which deter-
ditions for K —>co. mines the lower bound of coupling.

(b) To permit increasing the gains K.
indefinitely without loss of the stability, derivatives of all orders from
(n—-2)-th to first inclusive (where n is the degree of the operator D;(p)R;(p) )
are delivered to the system input. The equation for the i-th controlled
variable then has the form

D;(p) R (P)+ Ko iKi (@0p™ 2+ a,p"3 4 ... + 1)V, +
+ KR, (P)igkaikyk=K1Kctyrcrt+KiRi (P) i (6.103)

Dividing (6.103) through by K.,, we find

& DiOR )+ Ky (@pr2 40,054 .. +1)¥,+
+RG RUP) Dent s =KY i~ KL R ()},
itk

In terms of coupling this case is not different from that under (a). It is
significant, however, that the gain K.; may increase indefinitely without
incurring the danger of instability. The degree of coupling can therefore
be made as small as desired.

In the two structures above decoupling is attained simultaneously with
rejection of the external disturbances fir

(c) Finally we consider the case of multi-loop subsystems. Figure 6.15
is a block diagram of the multi-loop configuration for the i-th controlled
variable. The corresponding equation is

{[Qi (D) Fri(P)+ K, Fo (PN, (p) D, P+ Kot Fri (D)) Y, (p)+

+Klzaikylz DR Fri (DK, o Fa (PN, (p)=
=Kl tot le (p)ytmf(p)+
+Ki[Qu(P) Fri (D) + K, o« Frui (PN, (D), (D), (6.104)
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where K, .. =K/KyK;, and the following nomenclature is adopted for the i-th
subsystem: D;(p)is the plant self-operator, Q;(p) the self-operator of the
stabilized section, N;(p) the self-operator of the unstabilized section; Fni(p)
and Fn;(p) are respectively the numerator and the denominator operators

of the stabilizer ratio; K, is the gain of the stabilized section, K; the plant
gain, Ky; the gain of the unstabilized section.

Kyi Kis A

N;lp) qitp) J;(p)

FIGURE 6.15. Illustrating the disturbance rejection conditions
in a more complex case.

To simplify further analysis, we write (6.104) in the form

{7 @O Fnt (D) Fua (] N (2) Dy (P) + KKt (9} Y4
+,<f<—’“ QUOND) Fri (0) Y0¥ o+

+KFu (DN (p) 2 0V s = KKyiF i (D)Y 10+
s

+ B Q(p) i (9 + Ky o Fut(DIN, (D] (6.105)

We see from (6.105) that the dependence of coupling on structure in this
general case is determined by the two components of equation (6.105) which
contain the sums Xo,,Y,. In the first component the coupling coefficient
is directly proportional to the plant gain for the i-th controlled variable,
dependent on the controller self-operator and the denominator operator
of the stabilizer ratio, and inversely proportional to the gain of the
unstabilized section.

In the second component the coupling coefficient is proportional to the
plant gain and dependent on the self-operator of the unstabilized part of
the controller and on the numerator operator of the stabilizer ratio.

In systems with infinite-gain stability, the first component can be
reduced to a minimum by increasing the gain parameter K; .. The second
component has noticeable influence on the dynamics of the process, since
under steady-state conditions Fui(p)p=o=0.

A similar pattern is obtained when stabilization is achieved by ideal
derivatives embracing only a part of the control circuit. The corresponding
equation can be derived from (6.105) by putting Fmi(p) = 1.

We have thus established that, although the individual controllers are
not interrelated, the coupling of the controlled variables is highly sensitive
to the structure of the single-variable subsystems. External disturbances
can be rejected only by increasing the overall gain.
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§ 6.8. NONINTERACTION AND INVARIANCE IN THE
GENERAL CASE OF A MULTIVARIABLE COMBINED-
CONTROL SYSTEM

In this section we proceed with a discussion of multivariable control
systems with the variables interconnected through the plant and through
the load. In previous sections we have established that invariance in
systems of this kind does not necessarily imply noninteraction, and vice versa:
noninteraction does not automatically ensure invariance. We will now con-
sider some methods that ensure noninteraction and invariance simultaneously.

£ B0 (0

Hi Ko .
7 (7 I 70

> :
Imm (21 7)

EBinlplfy(p)

N

Zainlp) Vg (p)

FIGURE 6.16. Iilustrating simultaneous derivation of noninter-
action and invariance.

We have seen that invariance to an accuracy of ¢ is achieved in structures
with infinite-gain stability by applying an additional disturbance signal to
the general stabilizer input. We have also seen that noninteraction for
structures of this kind is attained by additionally delivering to the general
stabilizer input the sum of all extraneous controlled variables, each
multiplied by the respective coefficient a:(p).

Let us now consider how to simultaneously achieve noninteraction and
invariance. We will establish the additional restrictions to be imposed
on the system structure and parameters in this case.

Figure 6.16 is a block diagram of the i-th subsystem in a multivariable
combined-control system. We see from Figure 6.16 that the sum of the
extraneous controlled variables is delivered to the stabilizer input. The
Key
Ri(p)
the external disturbances (through a transducer). This structure is a
logical outgrowth of the configurations considered in the previous chapter,
As before, we assume that the system is structurally stable at infinite gain,

Without repeating the elementary manipulations, we write the matrix
equation for the case on hand:

element with the transfer function

additionally receives the sum of all

Y,=A"(p) [BY -+ LFI. (6.106)
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Inserting for the matrices their explicit expressions and multiplying
we find

n n.
A KerlurYier ‘ DA Ky (G —0,) 4y DB
k=1 i=1
n

>
k=1
1l 5 1 <
YO =7 X AuKerlealtn |+ 5| 244K, 0o —00)+ sl DBy |- (6.107)
2
k=1

n n
ApnKe plrpYeenn Z AenlKo g (Chp—0pp) T4y, 2 ﬂjifl
Aot iz

For the j-th controlled variable we have

Yj([’)z%{l;/‘kjl(cklkkymrk"i‘ kZlAkj[Kok(ckk_pkk)“"dkk];ﬁjifi . (6.108)

Here
ay +Ke by dnag, dyay dy @,
A= dyg0g a9y +Keoboa dyy0sy dyo0sn
dppOm dpp@nj  Gun +K cinbnn

A,;is obtained from the transpose 4,,

a,;= QRDF,8,,
bll=MiKileeml+FleiDieml’
€y =KiF 1,Q8ns (6.109)
4, =KQRF .8
ltl——;KiMiileeml’
Py =K8,,Q:Fms-
Let us first consider invariance of the controlled variable Y; under
the disturbances. Invariance is ensured if

K. 2 (Cor—Prr) + Gpp=0. (6.110)

Inserting for ca, pws, and d their expressions from (6.109), we write

ch(Kankaemk—Kﬁenkaka)_*_KkaR,kakemk=0’
or /

KyQu (FrsOpnp — Fug®pa) + 2228 it 0, (6.111)

Since by assumption the structure is stable for K,— oo, the conditions
of e-invariance for sufficiently high K. are still written in the same form
as in Chapter Five:

Fon __ Opp 112
ka - emk ) (6' )

Now consider the noninteraction conditions. Noninteraction of the j-th

controlled variable is ensured, i.e., the controlled variable ¥; is made
independent of all Y., k=1,..., n, k& # j, in both the steady-state and the
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transient modes of operation if the determinant A in (6.108) is independent
of the coupling coefficients as; an additional requirement is that the right-
hand side of the equation should contain terms with Yer; only, while terms

with Y, £=1,2,..., n, b+ j, all vanish.

The product [J K., can be taken outside the determinant A. Putting K—11=m"’
I=1 c

we write
may+by  md ey, mydyay mdya,
n Madyglsr  Malag--byy  madypyg madyay,
A— K Pl R . ( 6. 11 3
:I[=Il ¢ myd;og ves mjaz; by myny0, )
Ml ‘oo Mudnnln Mplpy~+ by

If the necessary and sufficient conditions of stability /39/ are satisfied,
the determinant (6.113) for sufficiently large Ke;(m;—0) degenerates to

b, 0 ... 0 ... 0
0 by ... 0 ... 0

A=lo .. 4 .. 0] (6.114)
REEERRL T .

n
If for the time being we ignore the factor K.;, the left-hand side of (6.108
g gn L1

separates into n factors and the determinant is independent of the coupling
coefficients ay.

Consider the right-hand side of (6.108). If the invariance conditions are
satisfied, it has the form

k;] AijcklkkYrefk' (6-115)

Let us derive explicit expressions for Apj in the case K., —»c0- The
transpose has the form

a4 Ke by dygoy dyay dpnn
a0y @29+ Koabay dpuj dpnlng
T ) .
kJ dndyy day0ia) 813+ Keibjj dpnoiy; (6.116)
dyay, dgatap dpp0, @pn+ K nbnn

For the j-th controlled variable Y; the elements of the j-th row in the
transpose are replaced by their cofactors, which are the Agj .

Now the cofactors have the following obvious properties:

(a) In the nonsingular case the rank of the cofactor is one less than
the rank of the system determinant.

(b) In each cofactor A; (k+ j) there is at least one row which contains
no elements with K,;, and it is only in Aj; that each row contains an element
with ch

Making use of these properties of cofactors and employing equation (6.113),
we write for the j-th controlled variable

n ’ Keoddj K may+by ... myd Vs
IIchtancl'm'yrefl Zl;ll s8ifRed Mppnlan oo Mplpy+ by, f
y,=L 5 + o AR ' p . (6.117)
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where

man+buy mpdye; ... mdye,
PP

D= IIIK” myd 04 v coo mydi0g,
Myt g veo MpBup—+ bpp

Here |m| is a determinant with all the elements of at least one row
multiplied by m; dots in the numerator in the explicitly written determinant
|@| indicate that elements multiplied by {m] are to follow. It is also clear

from (6.117) that all the terms contain a common factor HKC, Dividing
the numerator and the denominator by an“ and passing to the limit as

m—0, we find

5; 0 O 0
0 by O 0
l” 0 .o b]_| j-1 . 0
0 .0 aee aen bjpr, ja1 0
— 0. ................ e cee bnn_ l}ij{I
Y= ; 0 0 ...0 “l )= "F,; (6.118)

We have thus obtained noninteraction of the j-th controlled variable to
an accuracy of e. Hence readily follows the conclusion that if the structure
in Pigure 6.16 is stable at infinite gain and the necessary and sufficient
conditions of stability are satisfied, this structure can be made to ensure
simultaneous noninteraction and invariance at sufficiently high gain.
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Chapter Seven

SYNTHESIS OF FIXED-STRUCTURE SYSTEMS WITH
PROPERTIES EQUIVALENT TO ADAPTIVE SYSTEMS

§ 7.1. INTRODUCTION

Adaptive (self-adjusting) systems are used when the control system is
expected to alter its properties in accordance with the properties of the
controlled object. This situation may arise in the following typical cases:

(2) The plant parameters change in the process of control. The variation
of plant parameters may be due to external disturbances which cannot be
programmed beforehand or to some change in the operating conditions of
the plant. The structure and the parameters of the control system, though
quite adequate for the initial state of the plant, may prove to be inadequate
under the new conditions.

(b) There is an extensive class of controlled objects whose output has an
extremum in relation to a certain quality criterion. The problem to be
solved in the design of control systems for these objects is how to find
the extremum and how to hold it by on-line variation of system parameters,
so that, irrespective of external disturbances, the plant always remains
on the optimum frequency response {(optimum operating conditions), The
control system is provided with an appropriate searching circuit, which
is generally a fairly complex device. Searching ontrol systems are also
used when no information is available on the plant properties or when only
partial information is at hand.

In any case the system should have the property of adaptation or self-
adjustment. Sometimes simple adjustment of the numerical values of some
system parameters is insufficient, and adaptdtion is attained by actually
changing the structure of the system.

Systems with a self-improving program are somewhat different from
adaptive systems. Here, the ordinary feedback logic is insufficient for
effective control. The characteristic features of this case are best illus-
trated by the following example.

In Chapter One we considered the continuous hot-rolling mill as a typical
example of a multivariable controlled object. The principal aim of the
control system was to ensure constant thickness of the rolled sheet. The
sheet thickness is a function of many variables, In the general case,
the deviation from a given gage can be expressed as

a=F(h;, T, n, ny, ¢, 8, 1), (7.1)
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where h; are the roll coordinates, T is the rolling temperature, n;, niy are
the rolling speeds in the i-th and the (i+1)-th stands, 1; is the time lag,

¢ is a random variable, depending on the condition of the mill, uniformity
of the metal, and other random factors.

The problem is to choose the variables entering the function F so as to
minimize the gage deviation a (ideally it should be zero) and to maintain
it between permissible limits.

It is clear that (7.1) is a functional and we have here a variational
problem. It is also fairly obvious that we are dealing with a problem
in multivariable control. Indeed, the sheet thickness can be altered by
changing the roll gap or by adjusting the strip tension. -These two methods
of gage control, however, are not independent. We know from the theory
of rolling and from numerous experiments that the variation of roll gap
effectively alters the strip thickness only if the interstand tension remains
constant. If now the roll gap is adjusted without controlling the rolling
tension, the thickness will change insignificantly and there is moreover
the danger of looping on the reduction end of the stand and stretching (or
even rupture) of the strip on the other end. This development must be
avoided at all costs, so that the roll gaps and the rolling speeds are
controlled simultaneously.

The roll gap is controlled through the pressing screws, which are
positioned by a special regulator in each stand; the roll speeds are adjusted
by controlling the main drives of each stand. The different control systems
are interconnected through the strip. Hot-rolling gage control has another
characteristic feature which requires a special approach to the design of the
system. The strip thickness can be directly measured only after the last
stand; transportation lag makes it impossible to act on the strip section
that is being measured at the given time. This is the main reason why an
ordinary deviation-control system willnot do inhot-rolling mills. * However,
the distribution of thickness variability along the strip is nearly the same
for the i-th and the (i+1)-th strip, while for nonconsecutive strips this
distribution may be essentially different. This hypothesis is borne out by
a wealth of statistical data and constitutes the basis of what is known as
systems with self-improving program.

In these systems, the rolling program for the i-th strip is developed
from the measurement data for all the previous i-1 strips. Rolling-mill
control processes are of independent interest; here they are discussed only
as another example of adaptive systems,

We see that adaptation or self-adjustment is required when the plant
properties change due to external or internal disturbances and when
incomplete information is available on the controlled object. An indispen-
sable component of such adaptive systems (with the exception of the last
one considered in this section) is a searching circuit, and adaptation is
achieved by an adjustment of the system parameters or even modification
of the system structure to meet a certain quality criterion. An interesting
question to be considered in this context is the synthesis of self-adjusting
systems which adapt without requiring a change in structure. In the
following we shall see that such fixed self-adjusting structures can be
designed for a sufficiently large class of controlled objects. The subject
of this chapter is thus fixed-structure systems which have the same
properties as adaptive systems.

* Deviation control can be instituted by regulating some indirect parameter, e.g., the roll pressure,
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§ 7.2. STRUCTURAL NOISE REJECTION IN A
CERTAIN CLASS OF DYNAMIC SYSTEMS

As we have previously noted, one of the reasons for the variation in
plant properties is the presence of external disturbances. A highly topical
problem of modern automatic control theory and practice is the choice
of structures and parameters which are as noiseproof as possible.

Considerable attention is devoted in the literature to the problem of
noise suppression (see, e.g., /66/). The case considered in /66/ is that
of a noisy input, when the aim is to isolate the effective signal against
the background of noise.

In automatic control systems and in a number of servosystems the
effective signal or the reference pulse are without noise. Noise is injected
in several points along the control channel. This noise is contributed by
various loads and disturbances, which may be of a random nature. In this
section we deal with the case of random noise and show how to choose the
structure and the parameters of a control system so as to minimize the
interference. In the beginning we consider a single-variable system, and
then generalize the results to multivariable control systems.

1. Single-variable control system

Figure 7.1 is a block diagram of an automatic control system, The
reference signal Y. is delivered to the input and the system is expected
to reproduce this signal faithfully. It is assumed that Y, is noisefree.

KR ) KRW ByRl) hughgll) Ay Bogll) g Kz ool
ﬂ;(ﬂ/ ”y(ﬂ/ ”y'/(ﬂ/ Jyva{p} 4’0’/@ 4%4;/,’7 4.‘@04-/”(#/ ﬂﬂlp/

’ 4
th ety bkins_ foatberd
Dy 9/ Dygoper ) V4

0 pl/”ﬁ

FIGURE 7.1. The general case of an N-element system,

The system consists of N elements with transfer functions %%-;)p—). Of

these N elements, a+m elements in different parts of the closed loop are
noisy. For the sake of simplicity, let a n’oisy elements be concentrated

in one part of the loop, and the other m elements in some other part, so
that § noisefree elements separate between the two groups aand m. This
particular setup is adopted in order to simplify the mathematical manipula-
tions. The conclusions, however, are quite general and can be applied for
an arbitrary distribution of noisy elements in the control loop. There is
only one condition imposed on the position of the elements. If the system
input or origin is the point where the reference signal is delivered (we
have already remarked that the reference signal is noisefree), then the
first v elements after the input (where v is any nonzero integer) are without
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noise. Since noise is not necessarily injected at the input of each element,
the transfer function between the point of noise injection and the output of
the element is regarded as being different from the transfer function of
KiR; (,,)) ‘
Di(p) I
There is only one restriction imposed on noise: the noise and all its
time derivatives have a finite absolute value, i.e.,

the element (we denote it by

[IR<M  (i=1,2...,n k=0,1,..., m) (7.2)

Otherwise, the noise may be represented by any, in particular random,
function of time.

We now prove some properties of this class of structures, which are
Jointly referred to as "structural noise rejection".

The accuracy of reproduction of the input reference signal Y, increases
as the gain of the noisefree elements increases. Noise is suppressed by
the gain of the elements immediately preceding the noisy components of
the dynamic chain.

To prove this proposition, we have to find the transfer function of the
system shown in Figure 7.1.

For the noisefree elements we may write

Xy = D (p) v (7.3)

KR . KiR)(p)
;i T Dlp

;e (7.4)

After some calculations, we obtain the following expression for the
output of the loop shown in Figure 7.1:

v+a+$+mKR()KR - v+a+ﬁ+mKR()KR()
BiRkiip) Bnln (P) — iR (P) KnRy (P
[ zr D@ Da(p) T o D DLy Vet +
B+m et «a . .
+ KR, (p) KR, (p) 2 HKp+va+v(p)Kv+,_1Rv+j_l(p)f "
Dy (p) ot D;(p) = Dyio(p) Dyija J-1 (7.5)
! d ’ ’ ’
K,R, (p) ”i ImI Vorarps: (P) KV+a+ﬁ+/Rv+u+p+j—1(P) K.R. (p)

+ D, (p) D ) D’ fa+j_1+ Tf"

n j=2 p=1 “Vta+d+) via++j~1(P) . (P)

Let the gain of the noisefree elements be sufficiently high. Then
v
o ing L — .1 i
dividing (7.5) through by l;['K, }=v]i[a+]K, and putting K = Ky =m» We obtain
after simple manipulations

v+a+f+m [] m ,
[ 0" 000 [0y TL DitoDst+
i=1 I=v+1 p=v+a+p+1
a n

TKRp)Dup) I KR o) T Dio) T KR, (0%

Imvi1 =v+a+f+1

X ﬁ o;(,,)] Y ou =KuRu(p) D (p) KR, (p) X

a
p=vi+a+p+1 i=v+1
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X M. kR I Djw I Dop)Yer+

Jeviati+l J=vil p=v+a+f+l

o™

+m

+mK,R, (p) R (p) pZ H KvoRoro(p) Kvap-1Rbs -1 () X

i=a+1

Vi a+p
X ,[I] Dy (p){ Dvir () + Dyia(p) Dvr () + ... +\,1;[1Dv(p)]><

m v+a+

x Il pipy 11 L D m KR, () I D.(p)x

i=v41 J=via+p

>< [Dv+a+ﬂ(p) + Dv+u+ﬂ+1 (P)+ v +II=II Dv+a+{i+j (]7)] ><

m+l m (]

X 2 M KviasesiRvsasess(p) 11 Ditp)  I1  Dj(p)X
j=2 p=1 i= j=vio+p+/

v+1
v+a4B4m

XK;+a+ﬁ+j—1R;+a+3+j-l(p)fa+j—1+mv+a ‘l;[] D,(p))(

a m
X Il Diw)y M D(DKR, (P, (7.6)
i=v+1 J=vi+atp+l
From (7.6), clearly,
lim You( = Lrefs (7.7)
m->0

if this limit exists, i.e., if the system is realizable (stable) /39/. We
have thus proved the following:

(1) for the class of structures being considered noise can be suppressed
by increasing the gain of the noisefree elements;

(2) noise suppression improves for noisy elements far from the input.

The general equation of the output variable for structures of this class
can be written as

4847+ F o (p) + Ro(PNY o == Ro () Vs +m¥ 2F, (P i+
A m 4 X Frpas (P)fit oo - mV Y Fo(p) ] . (7.8)

form—0

Yo =Yref'

Such a system is realizable if and only if it remains stable for m—0,
i.e., for K;—»o. In other words, if the system retains its stability despite
an indefinite increase in the gain of the noisefree elements, the reference
signal can be reproduced with infinitely high accuracy. The structural
aspect of this proposition is that noise is suppressed by the gain of the
elements which are situated between the input of the control system and the
noisy element,

2. Multivariable control systems
Figure 7.2 is a block diagram of the i-th control loop. The plant and

another element of the circuit are noisy. That the loop includes only four
and not N elements obviously does not affect the generality.
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The relevant equations in Laplace transforms are

X = Y

Ku ___Ku
Doy Y Dy (7.9)

Ky X, Ky,

vl § ] 7 . 1 0
Dzi (p) Dz (p) fl ( )

2

K
Xo =5, Gy Xo (7.11)

n

Ky Ky
Dy(p) " Dy(p) ,; w57 (p)f
[y

Y= (7.12)

Solving equations (7.9) —(7.12) for Y;, we find
4
LI_I] D (p) Dui (p) Dis (p) -+ KuleiKaiKa:Dy: (9) D (P)] Y+

+Di:(p) Dt () D (p) Dt (p) Dis (p) Kt Zi 01 =
ki
= KiKolsiKuiD2i () Dy (P)Yer: +

+ Dy;(p) Di(p) KyKyKyfri =+ D1y () Dy(p) Dy (p) Dy (0) K f e (7.13)
Dividing both sides of (7.13) by K\K; and putting B

we obtain
4
[m? kI_[l D (p) D3 (p) D (p) ~+ KuuKuiDt (p) Dy (P)] Y+

~+m’Dy(p) Dai(p) Dsi (p) Dii (p) Dt (p) Ky D03 =
=K;KyDy(p) Dy (P)Y o +mD, (p) Dy, (9) Dy () KoK f 1 4
-+ m2D11 (P) Dgi (P) Daz (p) D41 (p) D;z (P) K4if21' (7 14)

and in the limit of very high gain
11m Yi=Y e (7.15)

We have obtained the same result and the same structural property.
Thus, the disturbance fi; is close to the input and only the gain of the first
element is available for its suppression. The disturbance f, is far enough
from the input to be suppressed by the gains K;; and Ky;, etc.

My %4z L 3
v ”/z/ﬂ/ ”z ,{( Zip) . Zm "
ref] (3
> =

R/
Z,(p)

FIGURE 7.2, Illustrating structural noise rejection,
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Structural noise rejectioh is thus a property that can be readily extended
to multivariable control systems. Here again system realizability is
obviously connected with considerations of infinite-gain stability.

§ 7.3. PHYSICAL REALIZABILITY OF SYSTEMS
WITH STRUCTURAL NOISE REJECTION

First let us consider the realizability of noiseproof structures in
application to single-variable systems (Figure 7.3). The noisy elements
are the second and the fourth. The gain of the noisefree elements can be
manipulated as required.

hEw thw KRo KA

500 i, D), B
},,e 7 X 2 ys 7 . 4 ¥
f > 7 > I 2I > I Jl >1 &

/('ﬂt,(;) A 1’? )

T2 /12 (P, $°4 fid

5 (p) A

FIGURE 7.3, Noise rejection in a more general case,

A structure is said to be realizable if it remains stable at infinite gain
and if the noise can be suppressed by increasing the gain. * It will be seen
from the following that noise rejection is possible only if the high-gain
element is unstabilized, so that the questions of stability and realizability
should be considered separately in this case.

After appropriate calculations, we obtain for the output variable of the
structure shown in Figure 7.3

4
n R, (P) Dy (p) Dy (p) KyKoKK,Y o
You = - P +
JII Dy (p) Dy (p) Dy (p)+ D;(p) Dy (p) Hl R, (p) K K KoK,

P,
4 4
I[l Dy (p) Dy (p) D; () + D;(p) D4 (p) H R, (p) KyKoKsK;

-+

. (7.16)

where

4
Py=T1 Di(p) i (p) KRi f2 ~+ D1 (p) D2 (p) Di (p) K2 (p) R2 () KoRs (p) KiRu (p) fr:

System stability depends on the position of the poles of the right-hand
side of (7.16) or, equivalently, on the zeros of the characteristic equation

4 4 .
g Dy (p) D2 (p) Di(p)+ Dz (p) Di(p) ]:l; R, (p) KiKoKoK, =0. (7.17)

* A more rigorous discussion of realizability, taking account of system coarseness requirements, is given

in a special section in what follows.
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Dividing (7.17) through by KK, and putting

L S
KoK ™

we write

4 4
[m’L[lDi (p)+KzK4[I=[1Ri (p)] D2 (p) Di(p)=0. (7.18)

The system is realizable if and only if the roots of {7.18) are in the left-
half plane for m—+0. Now, we see from (1.18) that for this to hold true it
is necessary and sufficient that the roots of each factor in (7.18) are in the
left-half plane for m— 0, Since the roots of D,(p) Di(p) are independent of m,
the roots that they generate depend on the self-operator of the noisy
elements. We assume that the elements are intrinsically stable, and -

D; (p) Di(p) = 0 therefore has left-half-plane roots. The stability of the
system as a whole therefore depends on the roots of the second factor

4 4
m’;[;[lD,(p)+K2K4gRi(p)=0 (7.19)

for m—0.
The results of Chapter Three suggest the following procedure for the
determination of the stability conditions.

Let N, be the degree of the polynomial ’l'[D (p) and N; the degree of the
polynomial IIR, (p); the system is stable if

(1) Ny— Nl <2;

(2) KK, J:IR, (p) = 0 satisfies the stability conditions;

(3) certain relationships are observed between the coefficients of the
polynomials le[}Di (p) and K2K4£!R, (p) depending on which of the two following

equalities is true:

Ny—N;=1

or
Ny— N, =2.

Let us consider the most difficult cases as far as realizability is
concerned,

Suppose that the elements shown in Figure 7.3 are made up of aperiodic
components. If out of the total of N components, v are high-gain devices,
equation (7.19) takes the form

N n N
mIa+Tp+ & I K=o

J=ntvl

187




n N '
Putting l;[]Ki I[vHKj:Kdeg, we obtain

N
m I (1 +Tip)+ Ky =0. | (7.20)

Equation (7.20) clearly satisfies the stability conditions for m-—0 only
if N<2. This is a trivial case of very limited interest.

Let us consider stabilization of the system for N,>2.

System (7.20) is stabilized for m >0by feeding into it derivatives at
least from the (N —2)-th to the first order. We now modify the structure
of the system by introducing additional N-2 amplifiers (the gains of these
amplifiers can be made sufficiently high)., Each of these amplifiers is

. . M
enclosed in a negative feedback loop with a transfer function T’—F—Tlﬁ

(Figure 7.4). As regards the remaining part of the circuit, we assume
that v out of the N aperiodic components are noisefree, and that their
gain can be varied between wide limits,

# Ay
Do) dip) oy
> > -

Ifi'

Jdd 2

Ztp)

FIGURE 7.4, Structure ensuring stability and noise rejection.

For the sake of simplicity the noisy elements are collected in two groups,
which are located as shown in Figure 7.4,
For the first N-2 feedback-controlled amplifiers we have

I=I ol L (it — ¥ o), (7.21)
X1=p, Gy Xnn (7.22)
Xo= DKfp) X1+EK(£T)I°11 (7.23)
Xo= Dy oy X (7.24)
) Xa-l-%fz- (7.25)

Eliminating X;, X, X; Xy_, between (7.21) —(7.25), we find

4 N-2
{ L[l D;(p) g (Tip~+ 1+ Kmps) D2 (p) Di{p) +

4 N-2
+ EK, g Kin(1+T,p) D2 (p) Dy (p)} Y
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4

N-2
= ]1 K, g Kin(1+4T:p) D3 (p) Ds (p) Yieg +
N-2
+D1(p) D (p) Da(p) I (Top + 1+ Koy ) KKK, +
4 N2
+ED1 (2) Dy (p) l];[l(TiP+I+thl"z)f2' (7.26)

N-2

The left- and the right-hand side of (7.26) are divided by 1IIK"'KIK2'
=1

Assuming that Kim, K1 and K; are of the same order of magnitude, we put

KLM=7<1—=KL=m and after elementary manipulations we obtained from (7.26)
1 3

4 N=2 N=2
{mZHDi (» |mN_2 g (14+T,p)+mV-% IZ‘JI = (1+Tp)+
N=-2 T
+mN“ui‘jZ_‘;l L A+T.p)+ -.-—HL”-?J+
Y

N-2 N-2
+ KK JE (1 +-Tp) } Da(p) Di(p)Y oy =m [mH Ha+7p+

N-2
+mV-u 3 I +Tip)+ ... =2 X
= |
N-2
XKHKD(p) D, (p) Dy (p) |, + m? [m"-? LI] A+ Tp)+

N-2

+mu 3 g}(l+T.-p)+ i P

4 N-2
X LD, (2 ;) f,+ KoK, I (1 + T.p) DD, ()Y o (7.27)

Here Z indicates that the first sum is taken over the combinations of the
products of all the subscripts, except j=1, thenext sumistakenfor j#2, etc.

We see from (7.27) that the gain of the feedback amplifiers does not
affect the noise, neither enhancing nor suppressing it. The only contribution
from the feedback amplifiers is that they alter the noise amplitude by a
factor of M¥-2,. If M<1, the noise is appropriately amplified. As in the
previous examples, the noises are suppressed by the gain of the noisefree
elements without feedback. If their gain is sufficiently high, noise is
effectively eliminated.

Let us now consider the left-hand side of (7.27) which, when made equal
to zero, gives the characteristic equation that determines the stability
(realizability) of the system. Thus,

N-2 . 4
m" [T +T.p) 1L D.(p)+
N-2 N-2 4

4
+m¥ 3 ,{;‘;,“ +T.p) LIlD, P+ .. +mun2 ]I D, (p)+

N-2 )
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The degrees of any two adjoining polynomials in (7.28), with the exception
of the last pair, differ by 1, and the difference in the degrees of the last
4

two polynomials is 2, since the degree of the polynomial zHD‘ (p) is by
=1

assumption N (we are dealing with aperiodic components).
The structural stability criteria formulated in Chapter Three are thus
satisfied. The degenerate equation in this case is

N-2
KoKy [T (1 + Tp) =0, (7.29)

It always satisfies the stability conditions, In order for the system to be

stable (realizable) it is clearly necessary and sufficient that the auxiliary

equation of third kind satisfies the stability conditions. The auxiliary

equation can be made to satisfy the stability conditions by an appropriate

choice of the time constants T;, the feedbacks, andthe gainfactorsp,;and K.K;.
We have thus proved the realizability of these structures. In this

case we have incorporated in the system N -2 high-gain amplifiers.

If N-1 amplifiers are introduced, we obtain an auxiliary equation of

the first kind, which in our particular case always satisfies the stability

conditions, as it can be reduced to the form

I a+T.q)=0. (7.30)

The number of amplifiers in the system can be reduced to N/2. The
corresponding auxiliary equation is of the second kind (see Chapter Three),
and the feedback parameters (second-order feedback loops are used in
this case) should be so chosen that the auxiliary equation satisfies the
stability conditions.

§ 7.4. REALIZABILITY OF NOISEPROOF STRUCTURES
IN MULTIVARIABLE CONTROL SYSTEMS

The results of the preceding section suggest a convenient approach
to realizability for multivariable control systems. It is of course clear
that the noise-rejecting gains should not be stabilized. The structure of
the system in Figure 7.2 should therefore be so modified that the system
becomes realizable and the high-gain elements K; and K; are left unstabilized.
Figure 7.5 is a block diagram of an i-th subsystem which meets these
requirements.

p P i K ﬂ__”é'i A5 1% ””ﬁ
. Vi . 7 (7] Tl 7))
Vs et X, 7ci X i " (P 1 2i P X %5 (P) 41 P ¥

> i

X

gn‘ Hzi Ky
11(p) Fai(P) Roi ()

FIGURE 7.5, Tlustrating realizability conditions.
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Making use of the nomenclature of Figure 7.5,‘ we obtain a set of
equations describing the behavior of this system:

=K1 Veers —Y1— X)), ' (7.31)
_ 1 ’
Xi= Ty Xv (7.32)
whence
Xi=K; ¢, ref—Ki.g;Yi—F;—lim—X,,
or
MiKes )
(1+ Fu(® )_Kcll ref Kcny“ (7_33)
and similarly
MigKe 2 )
X, (142 ) X (7.34)
wisKess )
(1 + ,.53 (pl)a ) K13 X o (7.35)
=T ,.(p) X (7.36)
Xs= sz o X D:t(P) fy (7.37)
K.
Xo= Dusfp) Xs (7.38)
K Ku K
=Dy KT Dy Dy 2“1*”*' (7.39)
k+1

Eliminating Xy, Xz, X5, X4, X5 and X, between (7.33) —(7.39), we obtain after
elementary manipulations the following equation for the i-th controlled
variable:

4 3 4 3 3
[g Dy, (p)’l;[l(Flk (p)+utkK”k)+klI=lekI=Il K, ikkl;ll:pik (P)] Y.+

3 3 n
+K41J=[1 Dy, (P)}!IJl (Fix (P)+H:chzk)ggt U (P)Y =

4
lIn ]IKclkHFik(p)mei+Dli(p H(sz N+

+ 1K ere) g Ki:h +Ku;l=-[l Dy, (P)J;[] (Fip () 0K 12) for (7.4 0)

Putting i=1,..., n, we obtain a complete set of equations describing
this multivariable system.

Suppose that the gains K, of the feedback amplifiers and the gains K,
and K.;can be made sufficiently large (theorefcically infinite), For the
sake of simplicity we assume that the gain factors are all of the same
order of magnitude. Putting

L1,
cla_Kx —Ka -
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3
and dividing (7.40) through by JIKC K\ K;, we obtain after simple manipulations
=1

4 3 : 3
{mzlll Dik(p)kl;ll [meF s (p)+“'ik]+K12Kl4J=IlFtk (P)}Yt+

3 3 n
+f7l"’K4ik]=Il Dy (P)J;[l [meF e (P)+Hik]k§ 0, (P)Y =
L)

3 3
=K12Ki4;z|;[1Fik ()Y ress+mD, (117)k1;[1 [meF i (B) 18] X

3 3
XKziK4if1+m2K41J=Il DI(P)J;[l[mkFtk D)+ wil o (7-41)
From (7.41), for m—0,
limY,; =V, (i=1,2, ..., n).
m->0

The realizability of this configuration is determined by the stability
of the multivariable control system as a whole, We have shown previously
(see Chapter Three) that a general multivariable system with infinite-
gain stability can be obtained if each single-variable subsystem is stable
at infinite gain; hence, to obtain the necessary realizability conditions, it
is sufficient that the roots of the equation

4 3 3
kaLIl Dzk(l’)l[l[mka (P)+M&]+K12K14JJIFM(P)=O (7.42)
remain stable for m— 0, We write equation (7.42) in expanded form:

4
ﬁl;lx D (p) {{mSF 1, (p) Fay (p) Fy (p) +mt [pyFry () Fos () 4+
+ 116F 12 (P) Fia (p) + 0Py (p) F i (D)) +-
= 123 [1y oy F i3 (D)~ WaahysF 1 (D) =+ BbbisFa (2)] 4
—+ m2y ]} - KoKy 11 (D) F o (p) F i3 (p) =0. (7.43)

The small parameter in braces appears in order of descending powers;

the polynomials multiplying the small parameter are likewise in a descend-
ing order, and all this corresponds to structural stability for m—»0. It
only remains to consider the polynomial

4
m’“u“nuislllDtk(P)+Ktth4th () F (p)F i3 (p) =0. (7.44)

Equation (7.44) corresponds to a realizable system if
d—v2, (7.45)

4
where d is the degree of the polynomial J[D,., (p), and v the degree of the
3 =1
polynomial J[ Fix (D).
=1

It is clearly not always possible to choose such a number of feedback
amplifiers that the structural conditions (7.45) are satisfied.
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When (7.45) is satisfied, the necessary realizability conditions are in
a sense satisfied also. The sufficient conditions are satisfied if the
degenerate equation of the multivariable system and the auxiliary equations
of first and second kind for the entire system satisfy the respective stability
conditions. The stability conditions for the degenerate and the auxiliary
equations are generally satisfied by a judicious choice of the feedback
parameters Fi and pax. In any case, this does not constitute a problem.
We have thus proved the property of structural noise rejection for general
multivariable control systems.

§ 7.5. SELF-ADJUSTMENT PROPERTIES IN A CASE
WHEN THE DISTURBANCES CAN BE DIRECTLY MEASURED

Consider an automatic control system where the plant properties
(characteristics) are highly sensitive to external disturbances, which
are applied directly to the plant. In this section we will deal with a
case when the disturbances acting on the controlled object can be measured
directly. We start with a discussion of single-variable systems, and sub-
sequently the results will be extended to multivariable control systems.

Suppose that the automatic control system is optimal with regard to a
certain quality criterion. The system parameters are calculated and chosen
ignoring the action of noise, but the system drifts away from the optimum
setting due to noise interference. Our problem is to alter the structure
and to choose the system parameters so that the optimization attained
without noise holds in the noisy case too. As we have previously remarked,
it is assumed that the noises acting on the system can be measured. It
thus remains to apply the results of the theory of combined systems
considered in Chapter Five,

FIGURE 7.6. Illustrating realizability with
the aid of real stabilizers.

Take a single-variable control system shown diagramatically in
Figure 7.6, In this figure Wu(p) is the transfer function of the plant,
KWi(p) and W;(p) are the transfer functions of the control system and the
stabilizer, F(p) is the external disturbance; KW,(pyand W;(p) are so chosen
that in the absence of disturbances F(p)the optimum process (with regard
to a certain quality criterion) is attained for a sufficiently high gain K.
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For example, in automatic potentiometric control with nonlinear feedback,
the optimum process is attained when the system gain is infinite /39/.
The system of course should remain stable as the gain is increased.

We will prove the following proposition. For K— o the structure in
Figure 7.6 without external disturbances is equivalent to the structure
in Figure 7.7 with external disturbances. In other words, measurable
external disturbances can be rejected if they are delivered as an additional
signal to the stabilizer input. This proposition follows from the results
of Chapter Five, and its proof is fairly obvious. Indeed, the transfer
function of Figure 7.6 without external disturbances is

KW, (p) W, (p)
K(p)=Xou! (P)= I+KW () Ws(p)
X (p) 1+M2_(P)_
1+ KW, (p) W3 (p}
— KW, (p) W, (p) (17.46)
14 KW, (p) W3 (p) -+ KW, (0) W2 (p) ’

In the limit K— o we find

= i = Wan
Kow (p)=lim K(p) =y rwatm (7.47)

The transfer function of Figure 7.7 is obtained from the following
equations:

Y (=KW (P){X1n (P)— X ou (£) — [V (D) + F (D)l W; (D)}, (7.48)
X o ()= W2 (D) [V (£)+F (D)]- (7.49)

Solving (7.48) —(7.49) for X o (p), we find

KW (5) Wa () Xpi(2) &+ Wa () F ()
Xow ()= TTKW,; (0) W3 () -+ KW, () W3 ()’ (7.50)

whence

s Xou (P) W, (p)
P MO ADES ALK (7.51)

i.e., the same expression as (7.47). We see that for a sufficiently high
gain, the system in Figure 7.7 behaves like an adaptive system in the
sense that its characteristics remain fixed despite the presence of quite
general external disturbances.

§ 7.6. CASE OF NOISY PLANT (THE DISTURBANCES
CANNOT BE MEASURED)

We now consider the case of a plant whose characteristics are altered
by external disturbances which are not amenable to direct measurement.
This is a very common case in practice.

Let the plant parameters in the noisefree case be known. A control
system is then designed for the noisefree case and optimized by indefinitely
increasing the gain K. Without noise, the system has the structure shown
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in Figure 7.6. We have shown in the preceding section that for K— oo the
transfer function of the single-variable control system is

e W)
K P=wmr v,

We now proceed to design the next structure (Figure 7.8). The controller
output (X in Figure 7.8) is delivered to the input of the real plant and to the
input of a model with a transfer function W;(p)(this is the transfer function
of the ideal, noisefree plant). The difference of output signals of the ideal
and the real plantis deliveredthrough a transducer W (p)to the stabilizer input. .

X AW (p) y W (p) Vet
>
-
v
- Figure 7.7, Application of stabilizers FIGURE 7.8. The use of an ideal plant.

to noise rejection.

The transfer function of the system in Figure 7.8 is obtained from the
relations

X (P) =KW (p) {yuf (P)—' Your (P) -

- Ws(l’) [X (p)+(yout (P) —y,ou( (17)) Wn (p)]}7 (7-52)
Yout (P)= W2(p) [X (P)+F(P)]r (7-53)
Yo (9)=W2(p) X (). (7.54)

In the noisefree case Wi(p)= W:(p), and since in (7.52) —(7.54) the
disturbances are represented by a separate term, we write from the above

(14 KW, (0) Wy(p) + KW, (p) Wo ()] Y oue (0)=
= KW (p) W2(p) Yeet (0) — KW () W3 (p) W (p) Wa(p) F (p)+ (7.55)
+ WL (0) F (p) + KWy (p) W (p) Wy (D) F (p)-

The stabilizer ratio is so chosen that the structure is stable at infinite
gain K, Dividing (7.55) through by K, we find in the limit K— oo

[WS (P) + W‘Z (P)] Y out (p) =
= WXt (p)+ [W2 (p) Wa (p) — Wi(p) W (p) W3 (D) F (p)- (7.56)

We see from (7.56) that noise rejection ig ensured if the transducer ratio
satisfies the equation

Wa(p) Ws(p) — W3(p) W (p) Wa(p)=0
or

1
Ve (0= w0 (7.57)
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- A circuit with a transfer function can be designed by the common

1
W2 (p)
methods used in the synthesis of structures with infinite-gain stability.
The higher the gain, the closer the resultant transfer function to the
sought value.

Hep
v p #, A, K A(’ R, it e, ol p)
re. ! 2 4
: > > > > |
< < <
7 7 (74
It p T, p Tty

FIGURE 7.9. An example of a third-order system with variable K.

As an example let us consider the case of a plant withthe transfer function

— Kip
Vln) = Grrmat npatrar (7.58)

The transducer ratio is

=1 . A4+Tp)(A+Tep) (14 1p)
V. D=y = R . (7.59)

Three high-gain amplifiers K, are connected in series. They are

1 1 and
T+Tp T+Tp 28
Transfer functions of this kind can obviously be synthesized without

feedback-controlled (Figure 7.9) by transfer functions
Kxp
1+1p*
any difficulty. To find the transfer function of the structure in Flgure 7.9,
we start with the equation

X2 (p) _ Kh Kh Kh

X, n K, RRtp *
iy trEms M

(7.60)

Dividing the numerator and the denominator of each of the three fractional
factors by Ky, we find

Xo(p) 1 . 1 1
B b . (7.61)
Ky Tw+1 K, 1+Typ Ky 141p

Putting 7<1—=m, we obtain after simple manipulations
h

Xa(p) __ (A+T1p) (14 Top) (1 1p)
Xi(p & ! (7.62)
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where
Q=m* (14T p)(14Top) (1 +Tp)+
+m2{(1+Typ) (14 Top) [Krp -+ 14p]) +
+m[(l+rp)+Kip (L + T1p) (1 4 Top))+ Kop,

In the limit K,—>co or, equivalently, m— 0, we have

lim
Koo

X)) _ Q+Tp A+ Tp (4w 1
X Ktp =wm = V= (7.63)

We have thus derived the desired transfer function.

Equation (7.63) is a degenerate equation. Realizability of the structure
in Figure 7.9 thus depends on the position of the roots which tend to
infinity as m—~0. To solve this problem, we have to draw up the auxiliary
equatior and to test its coefficients for stability. Since a term Kip enters
the numerator of the last feedback loop ratio, all polynomials multiplying
the small parameters are of third degree and the additional conditions
should therefore be checked for the following equation only:

m|Kp(1-+T1p) (1 4 Top) = (1 +1p)] + Kp.

The small parameter raises the order of the equation by two, and the
additional conditions have the form (see Chapter Three)

1 1
'ﬁ+T,>O'

which is naturally always true. We have thus shown that the required
transducer ratio can be obtained without difficulty. In reality, K, are not
infinite: these are large but finite numbers and the transfer function W, (p)
is therefore realizable only to a certain accuracy, which is higher

the higher the gain K.

Let us now consider the realizability of an extremum control system
in the multivariable case. We will assume that optimization of each
controlled variable corresponds to optimization of the system as a whole.
It will be clear from the following that this is not always true. At the
present stage we are dealing only with the case when each controlled
variable can be optimized in the previously explained sense and when
optimization of all the controlled variables corresponds to optimization
of the system as a whole,

Now suppose that the disturbances which cannot be measured are
applied to the controlled object in each variable. We thus obtain a
configuration shown in Figure 7.10, which is the i-th subsystem of the
multivariable control system.

The behavior of the i-th controlled variable is described by the following
set of equations in Laplace transforms

X1 =KuWi(p)[Yeer— Y oue i—Yi, (7.64)
Yi= Wau(p)(X:+ Xuh v (7.65)
Xu=W.. PV (7.66)
Yi=Yowi—Yous (7.67)
Y'ow = Wa(p) X1, (7.68)
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Yculi__“ W2(P) [Xi+f1+k§1alk(p)ynut k]. . (7'69)
kgt

Eliminating the variables Vi, Xu, Xy, Y1, Yo, between (7.64) —(7.69), we
obtain
(14K, Wi, (p) W3 (p) Wy, (p) W, 1 (D) K, Wy (p) Wi, ()] Vw1

+ Wi (D) War(D) W 1 (5) 3,04 (D) e ==

k=1

[y
=KWy () W3 (p) Vet + W (p) Wy (p) W, 1P+
T+ W) Wa K[ W (D W, 1 (p)— 28]y, (7.70)

or, dividing both sides by W, (p),

(14K, Wy, (p) Wy MW, D)+ Ky Wy O1Y o +
AW (D) W o1 (0) 2 0a aur 1= KWy (0) Yoer 4+ Wi (0) W s () i
+ 1+ W () W (DY K[ W o 1(0) — k] Vo (7.71)

Putting i=1,2,..., n, we obtain a complete set of equations describing the
multivariable control system.

FIGURE 7.10. The use of an ideal plant.

As we have previously shown the system can be optimized in relation
to each controlled variable; the disturbances f; together with the extraneous
outputs provide the noise which interferes with the given variable. The
optimum is thus attained if the extraneous outputsY,, pand the disturbances
f: are successfully eliminated. We see from (7.71) that noise rejection
can be achieved if

(a) Wu i (p) =
and

(b) Ki—> o0, the system of course remaining stable as a whole.
Making use of conditions (a) and (b), we find from (7.71)

-t
Wi ()

w W
[ ”\(l')/p,)l(pa)l (p_)+ Wll(p)]yoml= Wi lp) Vet s
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or

[Wy (p) Wa (9)+ Wi (0) Wi (D) Y 0w i = Wi (0) W (D) Y iet s (7.72)

or

You 1 — Wai (p)
Yeefs Wai () + Wi (p)'

An equation of this kind was derived in our previous analysis of optimiza-
tion of a single-variable system. This single-variable case is of some
interest as a variant of multivariable systems where noninteraction is
attained as a byproduct of self-optimization of each subsystem, which by
assumption corresponds to optimization of the system as a whole. In point
of fact, such self-optimization is feasible only if noninteraction and
invariance are ensured simultaneously.

§ 7.7. DISTURBANCES APPLIED AT VARIOUS POINTS
OF THE FORWARD PATH AND IN THE FEEDBACK PATH

Consider the case when the disturbances are injected at various points
along the forward path, with the exception of the input, and also along the
feedback path. This case is illustrated in Figure 7.11. The results of
§ 7.2 clearly suggest that by increasing the gain of the forward path
one can reject all the noises acting in that path and compensate the
contribution from the extraneous controlled variables. Now, if the plant
characteristics are altered in response to these disturbances, the resulting
structure is equivalent in its properties to an adaptive system. The
unsolved problem is noise rejection in the feedback path, but here we can
apply the conditions of structural noise rejection derived in Sec. 7. 2.

iy
Yy - > Jorm

A

FIGURE 7.11. Noise in forward and feedback paths

Structural noise rejection can be attained as follows (Figure 7.12), An
amplifier is connected in the feedback path, immediately after the output;
its gain can be made sufficiently large (theoretically infinite). Another
amplifier with gain Kj, close to zero is connected after the noisy feedback
element, so that ’

1
K m=1.
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Simple calculations show that K, > o0, Koy—0, and KuKan=1 the noise in the
feedback path is effectively suppressed.

FIGURE 7.12. Illustrating noise rejection in the feedback path,

In conclusion of this section let us review the results of §§ 7.2 and 7. 6.
We have dealt there with noisefree input signals. The noise rejection
techniques have been essentially developed for cases when the noises are
not amenable to direct measurements. The use of the ideal plant in
§ 7.5 enabled us, besides synthesis of W, (p), to ensure stabilization
with the aid of simple passive circuits, whereas the method presented
in this section requires special amplifiers that realize sufficiently ideal
derivatives.

The system properties can also be improved in the case of noisy input,
and this possibility is actually considered in § 7.5. Indeed if noise
rejection follows the method of § 7.2, an increase in gain enhances
the noise which is delivered to the input together with the reference signal.
From this point of view, if noise is injected together with the reference
signal, the suppression of all other noises that incidentally enter the
system requires unambiguous isolation of the original noise, and this is an
obvious shortcoming of the method. If an ideal plant is used, and especially
if the spectral composition of noise is different from the spectral composi-
tion of the reference signal, the parameters of the stabilizer Ws(p) can be
chosen so as to minimize the input noise., When the input is a mixture
of the reference signal Y., and noise fu;, calculations along the same
lines as before give the following expression for the output in a system
using an ideal plant:

— W, (p) W (p)
Yoo i=wyrwmmy Ve T wrmy £ witey [ (7.73)

If W;(p) is appropriately chosen and the spectral composition of the
disturbance is taken into consideration, the contribution from the second
term in (7.73) can be minimized.

§ 7.8. SOME ADDITIONAL TOPICS AND ESTIMATES

In the preceding discussion, a realizable structure was one that
remained stable at infinite gain. The concept of realizability used in
current literature has a broader sense, and our analysis should be corre-
spondingly augmented. Moreover, when asymptotic methods are applied
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(in our case the asymptotic behavior constitutes transition to the limit
m—0 or K- o, one always has to consider to what extent the theoretical
results are applicable in practice, when the coefficients after all remain
finite, and what errors are incurred in the asymptotic approximation,
We therefore first have to consider the following problems,

1. In control systems (as in any dynamic system), there are always
some parasitic, spurious parameters which at high gain may have a marked
influence on system dynamies. Two aspects of this question should be
considered:

(a) Will small parameters have a marked influence on system behavior
if they can be made quantitatively as small as desired?*

(b) How are we to determine the quantitative effect of small but finite
parasitic parameters on system dynamics ?

2. In real systems the gain cannot be made arbitrarily large: it may be
raised to a certain large but nevertheless finite value. What constitutes
"sufficiently large' gain, or in other words what are the numerical values
of gain for which the results obtained assuming infinite gain are applicable ?

3. What is the effect of certain kinds of nonlinearity on system behavior ?

We solve these problems by following the same procedure as before:
first we consider single-variable control system and then generalize the
results to multivariable configurations.

1. Quantitative estimation of small parameters

Let an automatic control system be described by an N-th order differential
equation. Moreover suppose that the system incorporates n small para-
meters, each increasing the order of the equation by one. The characteristic
equation that corresponds to the degenerate differential equation obtained
when the n small parameters are ignored is an algebraic equation of
(N—n)-th degree, and its general form is

apVN-r+tapV-rr 4 L H-ay_,=0. (7,74)
Let the roots of equation (7.74) be z;,, i=1,2,..., N—n. Then
azy-r4azV-"-14 .. H4a, =0 (7.75)

Introduction of the small parameters has a twofold effect. First, the
roots of the degenerate equation (7.75) are altered; second, n new roots are
added, which tend to infinity as the small parameters approach zero.

Let the introduction of small parameters alter the i-th root of the
degenerate equation by Az;. The coefficients of the degenerate equation
acquire corresponding increments Ae; and N new terms with the coefficients
Ab; appear in the equation. The complete characteristic equation with
small parameters is thus written in the form

Aby(z,+ Azi)N+ Ab, (21+A21)N_l + .. (ap+Aay) (2 +A21)N_" +
+ (@ +8a)(z,+82)""" + .. day_,+Aay_,=0. (7.76)

* It is here that we encounter the problem of coarse and noncoarse systems (in the sense of A. A, Andronov)

in all its acuteness.

201




Expanding, we obtain

Ab, [z{‘ +NzN-1Az, + %Ti

2NN L, -+
+ 80, [V 4 (V — ) 20z + EEUE =B e Ty

oo Ha@l -t a (N —n)2l-"=1Az,+ ... 4 Ag2V-n4
+Aa (N —n)2)-"-1Az,+ ... +a, ,+Aa,_,=0. (7.77)

Making use of (7.75) and ignoring terms of second and higher orders of
smallness, we obtain

Ap2lN 4 Ab 2= ... +azV-"+
+Aa¥-ri L +Aa,\,_n=tp1(z)|z=21 Az, (7.78)

where ¢ (z)[,ﬂl is the derivative with respect to z of equation (7.75) at z=z2;,
From (7.78) we obtain

bl anz} 4 L Aael gl L fAay,

Az, 7 @,

(7.79)

This expression relates the root increment to the increments of the
coefficients to terms of second order of smallness.

If the numerical values of the small parameters and the roots of the
degenerate equation are known, the error in the roots calculated from the
‘degenerate characteristic equation can be found using relation (7.79). If
the roots of the degenerate equation are real, relation (7.79) gives the
error in the decrements of damping; if the roots are complex, relation(7.79)
simultaneously gives the error in the damping decrements and in the free
oscillation frequencies of the system,

The problem can be approached differently. Let the permissible error
be known (e.g,, in percent of the root of the degenerate equation); our aim
is to find such numerical values of the small parameters that the error
incurred when these parameters are omitted does not exceed the permissible
error.

Let the permissible error be e, so that

Az =e¢z,.

The numerator in the right-hand side of (7.79) is a kmown function of the
small parameters m. Putting f(m)for this function, we rewrite equation (7.79) as

Fimy) =ez9" ()], . (7.80)

Here m, is the largest of the small parameters.
The error naturally does not exceed the permissible value e if, for anym,

m < my. (7.81)
In most cases the effect of the small parameters on system dynamics

can be quantitatively determined by considering only the errors in the roots
of the degenerate equation, although strictly speaking the change in the
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position of the roots generated by the small parameters should also be
estimated.

We have previously shown that when the small parameters approach
zero, the roots obtained from the auxiliary equation tend to infinity, In
reality, however, the small parameters are finite quantities, and the
corresponding roots are therefore located not at infinity but at some
finite distance from the origin,

For purposes of evaluation of the transient process via the degenerate
equation it is desirable to have the real roots generated by the small
parameters considerably farther to the left from the imaginary axis
than the leftmost root of the degenerate equation; alternatively, the
absolute value of the complex root calculated with allowance for the small
parameters should be substantially greater than the absolute value of the
complex root of the degenerate equation. Then, all other conditions being
equal, the transient components contributed by the small parameters will
have a negligible influence on the overall control curve.

If there are n small parameters, the auxiliary equation for m—0 has
the form

Ci4-Cyg*'+ ... +C,=0. (7.82)
The small parameters modify (7.82) as follows:
(Co+AC) g™ +(C+ACY 4" 1+ ... 4+C,+AC,=0. (7.83)

Proceeding along the same lines as before, we obtain an approximate
expression for the error in the i-th root due to the small parameters:

_ BogV 4+ abgV I L AN L (7.84)

Ag.
L O (D=4,

where ¢'(¢)]4=¢, is the derivative with respect to g of (7.82) for g=g;. If ¢;
is known, the error in the root can be found. The actual value of the root
is given by the equality

pr=20 (7.85)

¢ m

The relations of this section are suitable for the determination of the
numerical values of small parameters which raise the degree of the
equation at most by one. For certain structures the small parameter is
the reciprocal gain of the stabilized section of the control loop, and our
relations can thus be applied to determine the gain. Seeing that

1
m=—ﬁ, (7.86)
we write (7.85) in the form
=g +Aq)K, . , (7.87)
IfK is known, the true value of the root can be found from (7.87).
The reverse procedure is more convenient in practice: first find the

roots of the auxiliary equation with m =0, then assuming a certain
permissible error Aq use (7.87) to determine the gain K.

203



2, Coarseness in the sense of A.A. Andronov

Let each closed-loop subsystem of the control system have a certain
number of small parameters (in general, different subsystems need not
have the same number of small parameters). The starting set of equations
can be written in the form

[D1(p) My (p) Fr (mp) + Ki] X1 = — KiM, (p) Xo,
[D2(p) Mo (p) Fa(mp) - Ko) Xo= — KMz (p) Xy, (7.88)

[Dn(p) Ma(p) Fa(mp) + Kl X5 = — KM, (p) X o,

Here F;(mp)is a polynomial whose coefficients are functions of the small
parameters m; D;(p), M;(p), K; and K; are the operators and gain factors of
the controlled object and the controller in various closed-loop subsystems,

Suppose that the parasitic parameters are the time constants of the
serially connected aperiodic elements in the loop. Then

Fi(mp)=mPFo(p)+m* Four (p)+ ..., (7.89)

where p is determined by the number of small parameters introduced.

Expression (7.89) is quite general, provided that each small parameter
increases the degree of the equation at most by one,

In this case, however, the degree of the general characteristic equation
increases by an amount which is equal to the number of small parameters
introduced. The system is stable for m—0 if the auxiliary, as well as the
degenerate, equation satisfies the stability conditions. If the parasitic small
parameters enter the system in such a way that they are equivalent to a
chain comprising an appropriate number of aperiodic elements connected
in series, the stability conditions are automatically satisfied for small m,
In general, the small parasitic time constants can always be so adjusted
that, if sufficiently small, they will not affect the stability of the system.
Hence it follows that systems belonging to this class are coarse in
A.A. Andronov's sense,

§ 7.9. DETERMINATION OF GAIN

The method developed in the previous section for the determination of
small m and high K is universally applicable only in those cases when the
small parameters raise the degree of the equation at most by one.

Before this method can be applied, the roots of the degenerate and
the auxiliary equation should be found. Determination of roots, even
those of the degenerate equation, often involves considerable difficulties,
since the equation may be of a fairly high degree. Therefore, as a
supplement to the general method, which is quite useful if the effect of
small time constants on system dynamics is to be found, we describe
in this section some methods for the determination of gain in a number
of practically significant cases. We also consider the permissible margin
of variation of this gain for which the previously derived rules of structure
synthesis hold true.
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1. Gain entering linearly the characteristic equation

In the simplest structures which retain their stability at high gain,
the gain, which may vary between wide limits without causing instability,
is a linear component in the equation. A specimen structure of this kind
is shown in Figure 7.13.

4% %% %% KL
>

> P> > P

Oy

FIGURE 7.13. A structure with a real stabilizer,

Kiand K, are the gains that can be varied between wide limits. The
characteristic equation is

4
I ¢+ Tip) (14 7p) + Kiko[1p (1 + Top) (1 4 Tup)+ »

The limits of KK for which the system remains stable can be found
without difficulty. If all the other parameters are known, we plot the
D -decomposition curve in the K;K, plane, The equation of the D-decomposi-
tion curve in this case is

4
H (14 Tijo) (1 + tjo)

K= = T T O F T PR T ) (7.91)

The curve plotted from equation (7.91) is shown in Figure 7.14, The
numerical values of the parameters are listed in Table 7.1.

lm/;/éj 167(2 plane
TABLE 7.1 ot é/-\”
- -arsNS a7 72 Re AR,

T,, Sec| T,, sec|Ts, sec] T,, sec|t, sec| KK,

0.1 0.01 | 0.34 0.1 0.5 15

FIGURE 7.14. Illustrating the determination of KK,
limits,
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We see from Figure 7.14 that the system is stable in two KK, intervals:
the first interval extends from K,K;= —0.6 to +0.7 and the second from
KiK; =32 to + . The second range determines the infinite-gain stability
of the system. The least value for which all the preceding conclusions
hold true is obviously K;K,=32. In general, the characteristic equation
for the structures considered in this subsection can be written in the form

N

QP =K.R(p)=0, (7.92)

and the crossover values of K, are determined by examining the stable
regions of the D-decomposition curve

R, =—3U, (7.93)

One of the stable regions of necessity extends to infinity,

2. Gain entering nonlinearly the characteristic equation

Quantitative estimation of gain in this case is a much more complicated
undertaking, especially if we are interested in the whole range and not in
some single gain value from the stability region. The problem will be
solved in application to structures with infinite-gain stability.

Since the system remains stable as the gain is increased, there exists
a whole range of gain values where the system is stable. If the high gains
are replaced by their reciprocals, we obtain a certain region of small
quantities where the system is stable. This transformation will be found
useful in what follows,

We have previously shown (see Chapter Three) that the characteristic
equation of this class of structures with n high gains can be written in
the form

m"Fy, (p)=+m"~'Fy, (p)+m"Fy,(p)+ ...
-i—mFNﬂ_l(p)—f—FN"(p):O, (7.94)

where m=1/K. If the high gain parameters are not equal numerically, the
characteristic equation is nevertheless written in the form (7.94), but the
coefficients of the polynomials depend on some coefficients n; which express
the relationship between K; and K;.

The equation of the D-decomposition curve for a sequence of descending
powers of the small parameters m can be written as

" FNI (Jo) _ F/vz(f‘l’) 2 F/va(f“)) .
m =————FN°U®) {mn 1+——FN,U“’) [m +__FN2(jw) {m 3+...
v Fn (jo) .

We see that the small parameter to the i-th power is followed by the
equation of the D-decomposition curve in the plane of that parameter,
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provided that all the other small parameters and their D-decomposition

equations are ignored. Putting

FNI+| o)
Fy, (o)

m=— =D, (jo), (7.96)

we rewrite equation (7.95) in the form

m* =D, (jo) (m*-' — D,_, (jo) {m*=2— D,_5(jo) {m"=3—
—D,_3(jw) ... {m—D{jo)}. (7.97)

We have thus obtained an equation from which the limiting values of the
reciprocal gain can be determined.

3. Initial conditions

We have previously shown that for sufficiently high gain of the stabilized
elements, the transient is fully described by the degenerate equation. These
results were obtained assuming zero initial conditions for the transient.

In what follows we will show that the same conclusion is applicable in the
general case of nonzero initial conditions. (The problem of initial conditions
is moreover important because the results can be applied when the system
performance is assessed in terms of the degree of stability. *)

Let the initial conditions be

X(B)|o=% and xV(0)]_,=0 (=12 ... N—1) (7.98)

The roots of the characteristic equation are designated z, z,, ..., 2.
Since the system is stable, z; is either a negative real number or a
complex number with a negative real part. The free transient component

is expressed by the equation

N
x(f)=12_}_lAie’i’, (7.99)

where A; are integration constants.
To determine the N integration constants, we draw up N equations for
the N initial conditions. Making use of (7.98), we obtain from (7.98)
for =10
A+ A+ ...+ A =X,
2 A+ 24,4+ ... +zyAN=0,
ZA+2Z2A,+ ... +23A, =0, ('7.100)

ZV-1A H2V-1A, + .. - 2V1A, =0,

* Tsypkin, Ya.Z. and P.V. Bromberg. O stepeni ustoichivosti lineinykh sistem (Degree of Stability
of Linear Systems). — Izvestiya AN SSSR, tech. sci. div., No.12, 1945.
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The determinant of (7.100) is

1 2 N
2 2
A= B2 e (7.101)
N C R % ‘
The i-th integration constant is thus given by the equality
A =20, (7.102)
i A’ .

A; is the determinant (7.101) where the i-th column has been replaced by
the right-hand sides of equations (7.100),

Suppose that the system has n small parameters, each increasing by one
the degree of the equation. Then n out of the total of N roots recede to .
infinity as the n small parameters approach zero, and the other N — n roots
remain finite (in the limit they are equal to the N —n roots of the degenerate
equation).

The Laplace theorem is now applied to expand the determinants A and A;
in minors of (N —n)-th degree. Allowing n roots to recede to infinity, we
see that ‘

lim Aj=A, (7.103)
Zj—)OO
where
i=1,2,...,N—n j=N—n+1,..., N
and
lim A; =0, (7.104)
ZJ->OO

where A4; is the integration constant determined from the complete equation,
A; the corresponding constant determined from the degenerate equation,

Thus, when the roots generated by the small parameters become
sufficiently large, the integration constants obtained from the degenerate
equation are sufficiently close to the corresponding integration constants
determined from the complete equation; the other integration constants
approach zero.

Hence it follows that when the ignored parameters are sufficiently small
the transient derived from the degenerate equation is sufficiently close
to the transient derived from the complete equation.

Consider a different set of initial conditions:

F)

x (%) le=0 =% xt (B2 = X{ (7.105)
The preceding results are fully applicable in this case too, provided

that 4; and all 4; are finite. This can be easily verified by direct computa-
tion following the procedure outlined above,
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§ 7.10, THE EFFECT OF SOME NONLINEARITIES

The preceding results are fully justified for systems described by
linear differential equations with constant coefficients. As we have
remarked in the previous section, the gain is always finite in practice
and the parasitic time constants can be made arbitrarily small. The
evaluation methods developed above could have applied in this case, but
unfortunately, in real systems, some elements may be nonlinear. We
consider here some kinds of nonlinearity and try to establish how they
affect the structural properties of systems of this class.

For the sake of simplicity, we again start with the analysis of a single -
variable system. The results are then readily extended to multivariable
control systems.

The nonlinearity considered in this section is such that —Zi—f>0 at all

points of the steady-state characteristic ( x, is the input and x, is the output).
A suitable example of these nonlinearities is provided by magnetization
curves of electric motors, and other similar characteristics.

We will also consider the effect of these nonlinearities on the dynamics
of systems with nonlinear stabilized elements. It will be assumed that
the gain of the closed loop formed by the nonlinear element and the
stabilizer may vary between wide limits,

FIGURE 7.15. Estimating the effect of nonlinearities.

Figure 7.15 is a block diagram of an N-element control system with
n nonlinear elements whose steady-state characteristics satisfy the

A dX. . ces . . . .
conditions T)?ET >0. A linear amplifier is connected in series with each

nonlinear element, and each pair of this kind is embraced by a stabilizer
F.(p). The resulting structure is stable at infinite gain.

The equation of a single loop comprising a nonlinear element, an
amplifier, and a stabilizer has the form (see Figure 7.15).

X
Qu(P) Xy =K g [Xe = Fa (p) Xi]

or

[Qu (0)+ K, 22 Fo ()] i = K S X (7.106)
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where p=7dt-. Here K; is the gain of the linear amplifier, id)%"(:—‘ the gain of .
the nonlinear element, Fn(p) derivatives from first to (g, ~2)-th order,

where ¢; is the degree of the self-operator Q;(p) of the stabilized element,

Dividing (7.106) through by K, d{:;"]' and putting %:mh we write
4 dXi
(7.108) in the form
[7:Qi () 4 Fa (P)] Xis1=X.. (7.107)

Here m is a variable and its value is determined by the position of the
element's working point on the nonlinear characteristic,

If the number of nonlinear elements is n and the total number of elements
N, the equation for the N-th controlled variable is

n N N
1 (m:Qu(p)+Fu(p)] 11 [Q,(P)-+K)) X = II &%, (7.108)

The characteristic equation generated by (7.108) satisfies the stability
conditions for m;— 0 {or, equivalently, K;— o) if and only if the degenerate
characteristic equation

] N
7o 1010+ k=0

=a+l

and the auxiliary equation of first or second kind satisfy the stability
conditions.

If these conditions are satisfied, then for sufficiently small m < m, the
transient is fully determined by the degenerate equation

1 N
ani(P)jgl[Qt (1) +Kj] XN=/=1;I+1 K, X, (7.109)

Thus, if the gain can be made sufficiently large, so thatﬁ:m <my,

{TdX,
nonlinearity of the kind being considered will have virtually n:) influence
on the process.

We have established that the system is necessarily stable in the small.
Since for nonlinearities of this kind the equivalént gain /39/ is represented
by a real segment, the gain K; and the stabilizer parameters can be so
chosen that the gain-phase plot does not intersect with this segment, or
else the intersection is at very low gains and the system can be regarded
as stable on the whole.

Under these conditions it only remains to find the numerical value of m,
and as long as m;<m,, the nonlinearity can be ignored.

Stability at high K; is ensured by introducing ideal derivatives of up to
(¢ —2)-th order. As we have already remarked, the generation of these
derivatives often involves considerable technical difficulties. Instead of
ideal derivatives one therefore normally uses stabilizers with a transfer

function I_LPTP . We thus proceed to consider the effect of nonlinearity on

the dynamics of systems with %[—, stabilizers. The self-operators Q;(p)
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in this case are at most of second degree. The equation of the i-th
element is

QP Xi=K,—; XIH (Xi— X (7.110)

where X;is the stabilizer output,
The stabilizer equation is

(1 +) X i =pXi . (7.111)

Eliminating X;between (7.110) and (7.111), we find

dXz+1

[Qu(2) (1 +1P)+ K wp| X, oy = Ky (1 4-7p) L0 X, (7.112)

Differentiating in the right-hand side of this equation p=%, we find

[ (P (1) 4 K 0 wp] Koy = Ky (1) X K g ().

or

[Q:(2) (1 +1)+ K, L2 1p] X,y = [K, S (14 wp) + Kinp 5 ()] X (7.113)

Dividing (7.113) through by K;—; X"" and putting as before
1
Ki Xm+l (e
we find
T, d (dX;
[mQ:(p) (1 +v D)+ ol Xy =(1+1p) Xi+—d'X'i'+_l'EZ' ('le‘) X, (7.114)

ax;

In distinction from the case of stabilization via ideal derivatives, the
right-hand side of equation (7.114) contains a linear term (1 +1p) X;, which

does not add to our difficulties, and a term dependent on —‘1;()’(—?’ The

nonlinear effect cannot be assessed unless the last term in (7.114) is
estimated.

Figure 7.16 is the free-running characteristic of an electric motor;
this is a typical plot of nonlinearities with which we are concerned. Over
sections ab and ¢d we have %%l = const, and when the working point of
the nonlinear element is situated on these sections of the characteristic,
the last term in (7.114) vanishes. It remains to consider the case when
the working point is on the section bc. If the characteristic is smooth
and well-behaved over this section (as is the case for most real elements),
the last term may again be ignored, since it will slightly alter the
coefficients of the equation without changing its degree. Thus, if the
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gain of the linear amplifier is sufficiently high, the nonlinearity virtually
does not affect the dynamics of the system.

o1’
14274 4
) A= n

A
b
5
/
/!
/
a

g 2000 w0 s000 aw  Aw

FIGURE 7,16. A saturation characteristic,

Strictly speaking, the system should have been tested for stability
in the large. V.M. Popov's method [20/ provides a logical approach
to this problem. However, there is no need to proceed with the general
test for the very simple reason that the gain-phase plot of the open-loop
system, which is needed for testing the stability in the large by Popov's
method, cannot be constructed unless the numerical valueg of the system
parameters are known. A qualitative gain-phase diagram does not yield
any additional information, since in this class of structures the linear
part may have a virtually arbitrary characteristic.

In this section, as in § 7.8, we have dealt with single-variable
systems, but the results are readily extended to the multivariable case.
An example of this generalization is provided by the preceding analysis
of an n-loop system with nonlinearities.

§ 7.11. SYSTEMS WITH A RELAY ELEMENT

The use of relay elements in control circuits is of considerable interest
for some problems discussed in this book. To avoid any misunderstanding
we wish to stress that this is not an exposition of the theory of relay
systems. Our interest in elements with a relay characteristic is due
at least to three factors. First, the relay element has an infinite gain
when the deviations are sufficiently small. In this sense any amplifier
with an arbitrarily large gain and a zero-slope characteristic in the
saturation zone can be simulated by a relay element and, conversely,

a relay element can be replaced by an amplifier with such a characteristic.
Second, it has been demonstrated in a number of studies on optimum
control (see, e.g., /54/) that an element with a relay characteristic is

an indispensable component of optimum control systems and as such of
considerable interest in our analysis. Third, the sliding action of a

relay system is a fundamental operating mode of the entire class of
so-called variable-structure systems /8/, which have recently
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become quite popular in the theory of automatic control. It has been shown
in the literature /8, 71/ and will be demonstrated in the following that a
sliding-action relay system is equivalent in some of its properties to an
infinite-gain system.

We will consider two operating modes of systems with relay elements:
(1) stable equilibrium, and (2) sliding regime.

1. Stability of relay systems

Here we are concerned with the stability of equilibrium under small
deviations from the steady-state value (stability in the small), Stability
as such is interpreted in the conventional sense.

The relay characteristics depictedin Figure 7.17 show that an equilibrium
position which includes «x(f)=0 is obtained both in the case shown in
Figure 7.17a, where the equilibrium point is 0, and in that shown in
Figure 7.17b, where

X — Ry L XL X+ Ry

Here x(f)is the input signal of the relay element.

Lout l Lo

a b
FIGURE 7.17. Relay characteristics:

(a) an ideal relay, (b) a relay with an insensitive zone,

We are particularly interested in the case x=0 (Figure 7.17a). The
stability of blind-zone relay systems (Figure 7.17b) is determined by the
linear part of the system*, since for x(0) —x<x<x(0) <x(0) +x the relay
element does not affect the linear part and the entire configuration behaves
as an open-loop system.

The analysis of stability will be based on the characteristic equation of
the linearized system. Figure 7.18 is a block diagram of a relay control
system. The entire linear part is represented by a single block with a
certain transfer function, and the relay element is depicted separately.

It is implied that the linear part of the system is structurally representable
as a one-loop circuit without local (internal) feedback. The equation of
the linear part is found without difficulty. Let us consider the relay

* Tsypkin, Ya.Z, Teoriya releinykh sistem avtomaticheskogo regulirovaniya (Theory of Relay Control
Systems). — Gostekhizdat., 1955. ’
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element in some detail. The relay characteristic (Figure 7.17) is
discontinuous and nondifferentiable at the origin. The very applicability
of the method of small deviations and of the variational equation therefore
requires special proof. The variational equation can be shown to apply
with the aid of the results derived by Pontryagin and Boltyanskii /53/;
physical arguments will be found in Tsypkin's book mentioned in the
footnote on the previous page. Now, the equation of the relay element
(Figure 7.17a) is

xoul=q)(x)x{n7 (7.115)
where
+ X fOr x,>0,
cp(x)::{_xou: for x:,,<0. (7'116)

The characteristic (7.115) can be replaced by a continuous curve which
has a finite derivative at the origin, @ (0) + oo (Figure 7.19). The real
characteristic is then obtained from that shown in Figure 7.19 by letting
the angle B approach 90° and ®'(0) >, The variational equation of the
relay is thus replaced by the equation of an inertialess amplifier of
infinite gain:

X o =@ (0) %, (7.117)

where
‘D, (0) =Kc= 0.

The structural diagram of the system corresponding to this variational
equation is given in Figure 7.20, where the relay element has been replaced
by an infinite-gain amplifier. The equation of the entire system can now
readily be written,

‘z.out
Wip) -
' z,
FIGURE 7.18. A block diagram of FIGURE 7.19. Illustrating the transition
a system with a relay. K. —>oco0.

To avoid complications with stabilizers, we first consider a gystem with

a single-loop linear part. The transfer function of the linear part is Q—’(;)- .
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The transfer function of the entire closed-loop system (see Figure 7.20)
is then ‘

LKC_
e s (710
Q)
The characteristic equation is thus
Q(p)+KK, =0
or % QA +K=0, (7119

It directly follows from (7.119) that the system is unstable if Q(p)is of
higher than second degree. When Q(p)is of first or second degree, the
system is stable if ‘

B A B
E:— — T; >0 or A—;’ > 0.

Both conditions are satisfied in our case provided that the coefficients
of p and p?in Q(p)are positive, since A,=0.

A -
a0p)
\
Ao
FIGURE 7.20. The equivalent FIGURE 7.21. Illustrating the stability
circuit, of a relay system,

Any additional finite time constant, however small, will render the
system unstable. Therefore, in practice, configurations like the one
in Figure 7.20 are unstable in the small,

Let now Q(p) be of higher than second degree in p. A stabilizer is needed
to make the system stable. It is clear, of course, that no stabilizer will
do the job unless the relay element is also included in the stabilized loop.
Indeed, Figure 7.21 is a structural diagram of a system where the stabilizer
embraces only the linear part of the system. The transfer function of this
structure is

K
@ e
K -F”‘(p)-i—l
/(o) =22 0] _ (7.120)

R 1 /2l
K . F"l (p) +1
Q) Fn, (p)

215




The characteristic equation is obtained by putting the denominator of (7.120)
equal to zero, thus:

Q (p) Fa, (p) -+ KF 1, (p) + KKFr, (p) =0 (7.121)
Dividing both sides of (7.121) by K. and putting -7<1—=m_, we find

m{Q (p) Fu,(p)+ KFn, (p)] + KFp, (p) =0.

The difference in the degrees of the polynomial in brackets and the
polynomial KF,, is determined, as before, by the degree of the polynomial
Q(p). This conclusion is not affected if only the linear part of the circuit
is stabilized, the relay remaining outside the stabilizer loop. The only
way to ensure stability is to let the stabilizer embrace the section that
includes the relay element,

M M

Ke 42 4, (p)
o (p)
Iy (F)

FIGURE 7.22. A more general case,

Figure 7.22 is a structural diagram of a control system where the
stabilizer loop encloses the relay. In the nomenclature of Figure 7.22,
we write the closed-loop transfer function in the form

K L
‘A . K
1+ KK F,(»  Q:(p)
— Qi (p) Fm(p)
W (p)= P T (7.122)

<0 (» Q)
I+ ——KK, F, o)

U@ Fn(p

The characteristic equation is thus

Q1 (p) Q2(P) Fr, () + K. [KiFn, (p) Q2 (P) + KiKFa, (p) =0

or

mQ1(p) Q2 () Fr,(P) - [K1F 1, (P) Q2 (p) + KiKaF oy (£)] =0 (7.123)°

Let the polynomials F,(p), Fa(p) and Q,(p)be of the degree n,, n, and ¢y,
respectively. The system is then stable for m-—>0 if

4+ g —mn <2 (7.124)
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A system satisfying condition (7.124) is stable in the small if the
degenerate equation

KiFn (p) Q2(p) + KiKaF, (p) =0
meets the stability requirements and the following conditions are fulfilled:

%Z>O if ny+q,—n,=1,

or
B,
B—o———>0 if ny+-q,—n,=2.
In order for a relay system to be stable in the small, it should be
structurally stable at infinite gain. A relay is substituted in the limit
for the infinite-gain amplifier.

FIGURE 7.23. A system with n relays.

Let us consider a control system with n relay elements. This system
can be made stable in the small with the aid of n stabilizers, which may
be connected in two alternative configurations, Figure 7.23 is a structural
diagram showing the stabilizers connected according to the first configura-
tion. We will derive the transfer function of this system assuming small
deviations. For the i-th relay and the linear section encompassed by the

i-th stabilizer of a general kind iu ((1;)),

the transfer function is written as

KiK. KK\ F- (2)
_ Qi (D) _ AT L TAV Y
K= ‘R Fa) =P, F KKF S (7.125)

a® F,,®

N
Seeing that there is a total of n relay elements and putting H Q, (p)

for the transfer function of the unstabilized section of the system, we
obtain the following expression for the closed-loop transfer function:

KiK. iF
IIQ,(p)F,,,((p)-f—Ki Ko iF ni () H Qj(p)
K(p)= KK, Foi (D) = (7.126)

‘+Ho,<p>F (DT KK For () H o,(m
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H KiK. F y (P) ]‘[ K,

=— S , (7.126)
]:[[Q,(p)Fm,(p>+K, eiF ()] ]Io,(p)+
i= j= n+l
N
+ ] K&ftor T 4
i=1 J=n+1

Dividing the numerator and the denominator in (7.126) by K: and

putting Klv =m’, we write

]IKI H K]I[F 1(P)

=1 j=n+1
) 7.127
KO = rm o TPy, P T—Fy (P + - +mFN _ D+ Fn D) ( )

where

n N
Fy(p)= g Qi (p) ;=1,.I+1 Q; (p) Fmu(p),

FNl (p) =§K1Fnt(p). ..

. n N n N
Fr, (=M1 KiFu(p) T Qi)+ L KiFmi(o) I K.

j=n+l j=n+1

Putting the denominator of (7.127) equal to zero, we obtain the character-
istic equation of the system. The stabilizers should be so chosen that the
resulting configuration is structurally stable at infinite gain. Otherwise
the system will be unstable. If the structure is correctly chosen, stability
is actually ensured if the degenerate equation Fy.(p) and the auxiliary
equations of first, second, or third kind each satisfy the corresponding
stability conditions.

If the gain remains high in the case of large deviations too, the transient
behavior of the system is determined by the transfer function obtained
from (7.127) putting m=0, i.e.,

n

N n
I« I K/]I1 F i (P)

K(p) i=1 J=n+1 1= —_
n N
F ; K F K
]IKi ,,,(p)j_In[“cz (1»)+L[l . m,(p)j”I[H ¢
N
f]llKi
Fo N . (7.128)
H F ot ) II Q (”)+1HI’<!
1=1 n+

218




In fact we can speak only of some averaged gain, which is determined
by the ratio of the relay output to input. The higher the input, the lower
is the averaged gain. Near the origin, even the averaged gain is fairly high.
Let us now concentrate on the physics of the process in an n-relay
_system with structural infinite-gain stability. There are two possibilities:

(a) The stabilizer is such that each small parameter m=Kic raises the

degree of the characteristic equation by one. In particular, if the stabilizer
ratio is

1P =17

and the relay is inertialess, the forward path of the loop formed by the
relay and the stabilizer may include only a single element with a first-
order equation.

In the general case, the transfer function of a closed loop comprising

F,(p)

a linear element L, a relay with a gain K.;, and a stabilizer —% is

Qi (p) F . (p)
written in the form

K
K, KK, ,F,..(p)
. Q:(p) i . Netf mi
K(p)= K, Fo® = QO D FR K FL Gy (7.129)

e KT

If there are n such loops, and the total number of elements is N, the
transfer function is

d KchlFmi (p) Kj
:l[=I1 CWF,, (P+KK, F, (P j::lll Q;(p)
K(p)= - KRR F ) re (7.130)

J

N
1+g 0 F,, (B F KR T ) }=InIH %0

The characteristic equation is obtained by putting the denominator of
(7.130) equal to zero:

n N ] N
I1Q: 2) P )+ KiKerFo ()] 1T Qo)+ I KKeiFrip) TN Ky=0. (7.131)

Dividing (7.131) through by l]_[K,-Kci and putting ﬁ—=m1, we assume
=1 iNei
that K; and K,=K are related by K;=n:Ki=n:K and thus write (7.131) in the form

mnFNn (p)+m"— 1FN.,—I (p)—l—m"- ZFNu_z—I— -
oo +mFN-n41 (D)4 Fro-n (p)=0. (7.132)
N n
Here ¥, is the degree of the characteristic equation, equal to X ¢, + X Ny
i=1 i=1

and the subscripts of F designate the degree of the corresponding polynomial,
The transfer function (7.130) for this case takes the form

N n
F
1=1:-IHK’ g mt ()

K (p)= i
1(2) m"FM (P)+-m"= 1FA1,-1(P)+ +"‘FN°_,.+1(P)+FN_,. )

(7.133)
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(b) The stabilizer is such that each small parameter m= increases

1
KiK.
the degree of the equation by two. For the particular case of a stabilizer

with a transfer function T%T? and an inertialess relay, the forward path of

the loop formed by the relay and the stabilizer may include a single
second-order element (e.g., an oscillator) or two first-order elements
(aperiodic or integrating).

In the general case, making use of the notation in (a), we write the
characteristic equation in the form

mFy (p)+m=1Fy_ 2 (p)+ m*2Fy_y(p) + ... -+ Fnog, (p) =0. (7.132)
The corresponding transfer function is

N n
j=!lr1K}gFMi(p)

Ky (p) = .
2(p) ”’"FM (p)+m"—]FN0_2(p)+m"“2FN°_4(p)+ et FNU._Qn »

(7.133)"

A relay with the unit step characteristic shown in Figure 7.17a is stable
only if the input signal is zero (x=0). Integrating systems are therefore
assumed in both cases, which are in equilibrium for x=0.

2, Sliding mode

Sliding-action relay systems have been investigated in considerable
detail /11, 17, 13/. The physics of the sliding mode has been established
and the relationships to be satisfied for a system to operate in the sliding
mode have been derived.

We are interested in sliding action in connection with the following
problem. The use of structures with infinite-gain stability always raises
the question of how the infinite gain is to be realized. In the great majority
of cases the gain values for which all the preceding results hold true are
readily attainable, as they fall in the range of common gain values of
control systems (300—1000).

We have shown for saturable nonlinearities with a positive slope factor
in the saturation zone that introduction of an amplifier of sufficiently high
gain in series with the nonlinear element transforms the system to a
high-gain structure. In the case of a relay characteristic, the slope
in the saturation region is zero. It has been shown in the literature /71/
and will be demonstrated in the following that,a sliding-action relay system
is equivalent to an infinite-gain linear system.

We now proceed to synthesize a structure which will be equivalent to a
linearized system and derive the equations that describe its dynamiecs.
Figure 7.24 is a block diagram of a relay system.

Nomenclature:

K(p)= the transfer function of the unstabilized section;

F,(p)= the stabilizer transfer function;

R.E.= a relay element with an ideal characteristic (without an insensitive
zone);
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K (p)= the transfer function of the stabilized element in series with RE;
Yis (p)= the transform of the reference signal;
Y (p)= the transform of the output;

X(p)= Yu(D)—7Y (p);
Z(p)= the transform of the stabilizer output,

Alp)

Yip)
> b B o
> ]

Yipi
——a

FIGURE 7.24. 1llustrating the sliding-action conditions. FIGURE 7.25. A linearized system.

Let the system operate in the sliding mode. Then, as was shown in
/8, 71/, the relay element oscillates at infinite frequency with infinitesimal
amplitude. The relay input x(f) can be taken as zero, so that

*(O) =) —y () —2z(8)=0, (7.134)

and this is equivalent to an infinite-gain relay. The linear equivalent of
this relay system is thus a structure where an infinite-gain linear amplifier
is substituted for the relay element. The degenerate part of this linear
system is equivalent to a sliding-action relay system,

Structurally, the linearized System can be depicted as in Figure 7.25,
We see from the diagram that the input signal in this case is

= Yoes (£) — y (). (7.135)

The equation for x,(f) in Laplace transforms is

1
Z 00 = e g 40
s (P

or
2 500) = 5 2 (g O, (1.136)

and the equation for the output y(¢) is obtained by inserting for x,(f) in
(7.136) its expression from (7.135), thus:

2 WO =53k - W) . (7.137)

The preceding considerations are meaningful if the system remains
stable, i.e., if the conditions of infinite -gain stability are fulfilled.
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Our analysis shows that continuous sliding action is possible if at any
time the external impulse x;(f) varies at a slower rate than the internal-
feedback impulse z(#), i.e., if

L (O] <12, (7.138)

and it is only on this condition that the relay system can be replaced by
a linear equivalent.

Following Ya.Z. Tsypkin, we proceed to determine the condition of
existence of continuous sliding action in terms of system parameters and
external impulses. We first have to express z(f) and x(f) in explicit form.
From Figure 7.24 we see that

Lz =K\ (p) F, (p)-Z (2 O)}, (7.139)

but since

i
H+
”15

Z{0O)=-2Z[+K]

we have

2 (201 = £ KD F, () (7.140)

We see from (7.140) that z(¢) depends on the parameters of the internal
loop. As regards x,(f), we have from (7.136)

2 (5O = Foy ki L D)

Making use of the known properties of the Laplace transform, we write

Z12()) =p2 (2(8)) —2(0) } (7.141)
Z{(x(O) = pZ (2 ()} — %, 0).

Inserting for .Z {z(f)} and .& {x(¢)) their expressions from (7.139) and (7.136),
we find

201 = £ £ K (D F()—20), (7.142)
2 1k (0) = Ry - et (O] — 2O (7.143)

If z(#) and x (f)are determined from (’(.142), ('7.143) and the results are
substituted in (7.138), we obtain the conditions of continuous sliding action,

A sliding-action relay system is thus equivalent to an infinite-gain linear
system. A relay system in the sliding mode can thus be regarded as an
example of a real system with arbitrarily high gain. This approach is
often very convenient for systems where amplifiers have relay
characteristics.
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§ 7.12, THE PROBLEM OF SENSITIVITY

One of the methods to synthesize fixed-structure systems equivalent
to adaptive systems is by choosing a configuration where the principal
dynamic properties are independent of a wide-range variation of certain
plant parameters or even of certain characteristics of system components.

Bode was the first to introduce the concept of sensitivity, which
essentially determines to what extent a change in the parameters of the
individual elements affects the dynamics of the system as a whole. This
approach has established an intimate relationship between the synthesis
of fixed-structure systems equivalent to adaptive systems and the design
of structures which are insensitive or little sensitive to variation between
wide limits of plant parameters, plant characteristics, or characteristics
of individual system elements.

The problems treated in this book are directly related to the various
topics which are considered in the literature* under the separate heading
of control system design. In this category, e.g., there is the problem
of a low-damping oscillatory plant, of the so-called zero-sensitivity
systems*%, where positive and negative feedback are used simultaneously,
etc. As regards the achievement of zero sensitivity by simultaneous
application of positive and negative feedback, it is shown in Chapter Six
that, unless special measures are taken, this solution yields noncoarse
systems (in the sense of A.A. Andronov). However, the main point here
is that the synthesis of systems which are insensitive to variation of
parameters and characteristics of the controlled object or of some
component elements is an inherently structural problem. A feedback
system is not only an illustration but a convincing proof that the desired
properties are ensured only by appropriately designed structures. We
know that the sensitivity to parameter variation in a negative feedback
loop diminishes as the gain is increased. However, increase of gain may
lead to system instability. The problem is therefore again to synthesize
a structure which will ensure the necessary gain without losing its overall
stability.

Absolute or relative changes in the dynamic properties of the system
as a function of parameter increments can be used as sensitivity indices.
Bode introduced the following sensitivity index with a definite physical
meaning. Let K(p) be the closed-loop transfer function. The sensitivity
is defined as the ratio of the change in the closed-loop transfer function
to the change in the plant transfer function, i.e.,

K _ dinK(p) __ dK(p) = Wi(p)
Svlo=Tmw,(n — W@ KRG (7.144)

An alternative definition of the sensitivity coefficient has been advanced
by P. Kokotovié /86/:

__4dK(p) _ dK(p)
S——m-—_dq q, (7.145)

* Bode, H.W. Network Analysis and Feedback Amplifier Design, — N, Y., Van Nostrand. 1945.
** Truxal, J.G.—In: "Samoprisposablivayushchie sistemy”, Ch. III. Translations from English. Moskva
IL. 1963,
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where ¢ is the parameter whose influence on system dynamics is being
considered.

In what follows we will describe the application of the two definitions
to particular cases,

1. Bode sensitivity S¥ in single-variable systems

Plant characteristics can be altered only by external disturbances. The
characteristics change in the result of on-line interference from some of
the plant parameters. We are concerned here with systems where the
plant parameters can vary between fairly wide limits in the course of
the control process. An adaptation (or self-adjustment) index of these
systems is the degree of insensitivity of the transients to the plant
properties or, more precisely, to their variation.

We will apply the Bode sensitivity S§ to estimate the adaptivity of
systems with the above properties. In fact, the smaller the sensitivity 8%,
the closer is the system to an ideally adaptive one. At first we consider
a synthesis technique utilizing minimum- $¥ structures for single-variable
control systems.

As we have already observed, the properties of a system become
progressively insensitive to changes in the controlled object as S§%),
decreases. For this reason an ideal adaptive structure is such that S’&;S’(’L)

is independent of Wa(p) or S¥¥, >0,

Al w
7, p 2(p)

y ref

K
>

A
>
Wyp) |
<

FIGURE 7.26, An adaptive system.

We now prove the following proposition: structures with infinite-gain
stability stabilized by nearly ideal derivatives, where the derivatives are
"idealized" by adjusting the gain values, are adaptive in the above sense.
Indeed, consider a structure of this kind, shown in Figure 7.26. The
closed-loop transfer function is

K
o W (p)
K(p)=—20) 77 (7.1486)

r'e .
1+WP_) W2 (p)
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The sensitivity (7.144) is thus given by

K T K K ___K _K_
AT [+vm “7’(‘2] 7.0~ 7@ P TTG VO g
z i (¢ (7.
[+ w720 V.
Simplifying, we find
SKy = (7.148)

K
14 . W2 (p)

and
K>
We have obtained an ideal system in the sense of the preceding.

Now consider the expression for sensitivity of systems with infinite-
gain stability stabilized by passive stabilizers.

Wer )
| < |
=

FIGURE 7,27, Structural equivalent of FIGURE 7.28. The use of an ideal plant,
Figure 7.26.

As an example we take the simple case of a system shown in Figure 7.27,
The closed-loop transfer function is

— KW, (p) W1 (p)
S ey ATy AT EN S AT AR (7.149)

The sensitivity is given by

sk __ [1+KW, (p) W; (0} KW, (p) W (p)] — KW, (p) W, (p)
W (o) IFRW, ()W, (5) - KW, (D W3 () ' (7.150)

Simplifying, we find

sk 1+ KW, (p) W5 (p)
2 (AT T KW, (p) Walp) + KW, (p) W, (p)

At sufficiently high gain, we have in the limit

: K(p) __ W;(p) »
Aim Swh =w T (7.151)

225




We see from (7.151) that even at fairly high gain, the system dynamics
remains sensitive to changes in plant parameters or characteristics.

Let us now try to improve on the stable structure so as to minimize
the parameter influence on system dynamics and to make the system
ideally adaptive in the above sense.

As in the case of external disturbances which defy measurement,
the adaptive system can be conveniently synthesized with the aid of
an ideal, noisefree plant model. Figure 7.28 is a structural diagram
corresponding to this case. Using the nomenclature of Figure 7.28, we write

1(p)=KW(p){X 1 (p)— X o (P) — W3 (p) ¥ (p) —
— W,(p) Wa(p)[Xout ) — Xon (p)]} (7-152)
Here Xo (p) is the transform of the ideal output, X o« (p) the transform of
the real plant output. The ideal plant characteristics are assumed to
remain constant.

The difference X' (£)— X on (p) is thus equivalent to a disturbance due to
variation of plant characteristics. Hence,

Xow () — X o (B) =CF (p), (7.153)

where ¢ is a constant. Thus,

X o (P)=W2(p) Y () +cW2(p) F (). (7.154)

Inserting for X u (5) — X ox (p)in (7.152) its expressionfrom (7.153), we find

Y (9) =KW, (p)[X o (D)= X o (0) W3(D)Y (D)= W, (D)W, (p) cF (p)],  (7.155)

whence

KW, (p) X 1n (p) — KW1 (p) X 0w (p) — KW () Wp(P) W5(p) cF (p)
Y(p="—" BE AT A E— - (7.158)

Substituting (7.1586) in (7.154), we find
W, (D) [KW,(0) X, (P) — KW, (D) X e (P) — Wy (0) W3 (P) KW, (p) cF(p)]

o = T+ KW, (7 Vs () (7.157)
and solving for X, (p) we write
Ko (P)= 111‘21;)(:;&)&:&% ((;)) C;::p)) ' (7.158)
For K—»>oco we have
X o (p) = WO WX, () WX () (7.159)

W, (p) Wa(p)+ Wy (0) Wp(p)  Wi(p)+ Wy(p)

We see from (7.159) that the output is insensitive to changes in plant
parameters. If W:(p) is optimized (with respect to some quality criterion),
the system will hold the optimum irrespective of changes in plant
characteristics.
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2. Kokotovié sensitivity §

We deal here with the same cases as in the preceding subsection, using
the sensitivity (7.145). The variable parameter is the plant gain, which
is allowed to drift between wide limits. The transfer function of the plant is

W2 (p) = KoW2(p); (7.160)

relation (7.146) is thus written as

KK, W, (p)
W (p)
K(p)=—72"0—. 7.161
R AT (7.161)
Wi (p)

We are concerned with sensitivity in respect to relative changes in
plant gain, K,. We have

KW (p) [1+ KK Wy (2) | KWy(p) KK Wy

W, (2) AR R ACERAD) KWy (p) Wi (p)
S=-2 NP Ky= —. (7.162
[1 KKowzm]* O [Ws () + KK W5 (P ( )
Rl AT
Thus,
lim =0, (7.163)
K->

i.e., the same result as before. If the system is stabilized by passive
stabilizers (real derivatives), the results are also the same as those
obtained with the Bode sensitivity. Inthisclass of structures, S% and §
are equivalent in the sense that they give identical results.

The principal structural conclusion that follows from the preceding
can be formulated as follows. In order for the system dynamics
to be independent of changes in parameters or character-
istics of some element, the controlled object included,
it is necessary that the gain of the loop with the variable
element be sufficiently high. Itis implied that the entire system
remains stable in the process. A system of this kind is realizable if its
structure possesses infinite-gain stability.

We see from our preceding treatment of sensitivity in two structures
with infinite-gain stability that, in the second case, increase of gain failed
to produce sufficiently low sensitivity without the incorporation of an ideal
noisefree plant. This was so because we did not increase the gain of the
loop with the variable element.

In practice, low-sensitivity systems can be synthesized by a simultaneous
application of the two techniques. This will enable us to dispense with the
ideal plant in the network. As an illustration, let us consider the case of
a structure which is stabilized by ordinary passive elements. The structure
in Figure 7.26 is modified as follows (Figure 7.29): a high-gain amplifier
is connected in series with the variable-parameter plant. The closed-loop
transfer function for Figure 7.29 is

—_ KW, (p) W, (p)
KO = 11w, 0s o) F KW, O W) (7.164)
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and
Jim SHin =0, (7.165)

i.e., we have obtained a system with zero sensitivity.

FIGURE 7.29. An adaptive system,

It remains to be shown, however, that the system is stable as K—oo.
Let the transfer functions of the system elements be

F
KW, (=38, Wp=78 ana W=

_Ko
D(p)"

The characteristic equation is obtained by putting the determinant of
(7.164) equal to zero, thus:

R(p) . Fn(P) o) Ko . R(p) _
1—H(Q(p) Fuiny TK DR Qe =0 (7.166)

Dividing (7.166) through by K? and putting —,l<——_—m, we obtain after simple

manipulations

m*D (p) Q (p) Fuu (P)+mR (p) F . (p) D (p)+KoR (p) F o () =0. (7.187)

The difference in the degrees of the first two polynomials is g+m —r—n,
where ¢, m, r, and n are the respective degrees of the polynomials Q, F, R,
and F.. Since the structure in Figure 7.28 has infinite-gain stability,
we may write

g+m—r—n2.

Now consider the difference v in the degrees of the last two polynomials.
If d is the degree of D(p), we have

V=n—+—d—'m.

Since n —m has been determined from the structure in Figure 7.28,
everything depends on the value of d, which is the degree of the denominator
of the plant operator. Ifd <2, zero sensitivity can be attained for the
structure in Figure 7.29 without any additional means. If, however, d>2,
the inequality

v=n—m+d<2
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must be satisfied. This can be done by a simultaneous application of the
first and second methods of synthesis of previously discussed structures
which are stable for K—oo.

We have already shown how to achieve infinite-gain stability in systems
with nonlinearities of a certain kind. We have also emphasized that an
infinite gain is realizable with a sliding-action relay system. Infinite gain
can also be obtained with the aid of a sliding-action system of variable
structure /8/.

At the end of this chapter we will show by considering a number of
examples that our conclusions concerning zero-sensitivity structures can
be extended to plants with variable parameters as well,

And now a few words on multivariable control systems. In this section
a system is regarded as ideal or adaptive if the control dynamics are not
overly influenced by the variation of plant characteristics. Feedback
between the controlled variables obviously affects the dynamics in each
control loop irrespective of whether the particular controlled variable is
sensitive to variation of plant characteristics in the other variables or not.
For this reason, system optimization in this case automatically involves
noninteraction. If each controlled variable has its own extremum, and there
is no single extremum for the entire system, noninteraction is the most
desirable operating mode.

§ 7.13. SYSTEMS CONTAINING ELEMENTS
WITH VARIABLE PARAMETERS

The parameters of many elements vary with time., Systems containing
such variable elements are called systems with variable para-
meters. The time variation of the parameters may be quite arbitrary.
For example, the self-inductance and the mutual inductance of synchronous
machines with prominent poles are sine functions. In general, time
variation of the parameter is not always known. If an element with a
variable parameter is included in a control system, the variation can be
interpreted as internal parametric noise, an obviously undesirable effect.
We thus again arrive at a problem of sensitivity: find a structure such
that time variation of a parameter does not influence the dynamic
properties of the system as a whole or, alternatively, find a structure
whose dynamic properties are insensitive to time variation of the parameters
of individual elements.

Consider the following example, Let the controlled object be described
by a first-order linear differential equation with variable parameters,
specifically:

a(t) e 1 b(t)y = x. (7.168)

Here a(f) and b(#) are time-variable coefficients, y,, a controlled variable,
x the controller input. Our task is to maintain g/ constant.

We will make use of the previous results obtained for linear systems
with constant parameters. Figure 7.30 is a structural diagram of a system

229




that maintains the output y,, constant, changing it only if y.is changed,

We put %*—-p. * Then (7.168) is written

18 (&) 25O 4 ou (8} = x(2). (7.169)

The equation of the system shown in Figure 7.30 is written as follows.
For the section with constant coefficients we have

T LETR 14, ()~ e (O] =28, (7.170)

and the element with variable parameters is described by (7.169). Eliminat-
ing x(f) and differentiating, we find

[Ta®) PP+ Tpa(typ+To{e) p+Tpb () +a(t) p+& (B Yo () 4+
+Kla®)p+b5OY o O+ K+ TPy, ()=
=K2(1 4+ Tp) et (). (7.171)

Dividing both sides of (7.171) by K?and putting%=m, we find

{m*[Ta () P+ (Tpa () +-a )+ To(f)) p+-
+Tpb()+ b +mla(?) p+ b))+ (7.172)
FA+TP) )Y o (=1 4+ Tp) y(t),
Jim g oue (£) == Yrer (8)-

We have automatically obtained an ideal response, provided that the
gain can be made arbitrarily large. The only restriction imposed in this
case is the requirement of continuity of the time-dependent coefficients.
The absolute values of pb(f) and pa(f) are thus finite, This restriction on
the variation of the coefficients enables us to introduce further simplifica-
tions and to elucidate in greater detail the dynamic properties of the system.

}'am

FIGURE 7.30, A plant with variable parameters,

Indeed, introduction of high-gain amplifiers, one of which is embraced
by an aperiodic element, ensures faster and more faithful reproduction
of the reference signal as the gain is increased, so that for sufficiently
high gain values the coefficients a(t) and b(t) can be regarded as slowly
varying. In a sense we end up with a network which is equivalent to a

* Do not confuse this operator p with the complex number in Laplace transformation.
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linear structure with constant coefficients. The structure chosen should
remain stable at infinite gain. The degenerate equation then takes the form

(T +ma @] p+14+F@m=0, (7.173)

where a(f) and b(f) are constant for the duration of the transient. If a(?)
and 5(7) may take on negative values, it is necessary for the stability of
the degenerate equation that ma(f) <T and mb(f) <1, which is always feasible
by making an appropirate gain adjustment.

The additional condition in this case has the form

)
T O (7.174)

We see from (7.174) that the coefficient a(f) must not be negative;
otherwise the system is unstable.

We have thus proved that a virtually ideal response is attainable in this
class of structures in the presence of elements with time-variable para-
meters. In other words, we have obtained a structure which is insensitive
to the influence of time-variable parameters.

The above results can be readily generalized to the case of a controlled
object described by an n-th order equation with variable parameters.

If n is the order of the equation describing the variable element, there
is in general n+2 variable parameters, and a dynamically insensitive
structure is generated by connecting n amplifiers of sufficiently high gain
in series with the variable elements. Of these, n—1 amplifiers are

stabilized by feedback elements of the type l-l—lTp . The system is tested

for stability assuming relatively slow variation of the coefficients.

The system is realizable if the degenerate and the auxiliary equation
each satisfy the stability conditions. The number of amplifiers may be
reduced to n/2 +1 if each amplifier is stabilized by a device with a transfer

functlonm. This produces an auxiliary equation of the third kind.

In practice, it is more advisable to use » amplifiers for the following
reasons. First, the amplifiers themselves have a certain, albeit small,

inertia, and this may limit the gain if S TESY stabilizers are used,
while T,Tl.‘ﬁ amplifiers are virtually unaffected by this property. As an

illustration, Figure 7.31 gives a specimen structure for the case of a
plant described by a fourth-order differential equation with variable
parameters, *

One highly important property of these structures should be stressed.
The point is, that the effect of the variable parameters on system dynamics
is suppressed by the gain of the unstabilized amplifier. As regards the
other amplifiers, they produce the derivative action required for purposes
of stabilization (it also ensures accurate and fast response), If there are

1
TpF1°

n amplifiers with stabilizers of the type all derivatives from n-th

* If the time rate of parameter variation cannot be ignored, the stability should be investigated by the
method of V.M. Popov.
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to first are produced; the higher the gain values, the closer are these
derivatives to the ideal. But the gain of a closed loop comprising a high-
gain amplifier and a stabilizer is close to unity. This is highly significant
for noisy systems.

>

FIGURE 7.31. A more general case of a plant with variable parameters.

High gain is attained with the aid of sliding-action relay systems /71/
or variable-structure systems, also operating in the sliding mode /8/.

In conclusion a few words on the potential of the systems discussed.

From the aspect of classification of optimum control systems (e.g.,
according to Draper and Lee), we have to consider two cases.

1. The plant characteristics and the input-output functional dependence
are well known. One input is adopted as the primary reference for control
purposes, and all other inputs are generated by a programmed device
which optimizes the system in accordance with the given input-output
relationships. This system will function successfully in the noisefree
case or if noise is suppressable.

2. The plant characteristic is not known. We only know that it has
an extremum, which can be located by one of the searching techniques,
First, the characteristics of the searching signal should be optimized in
terms of gain and frequency; second, the output searching losses are
minimized (this is the difference between the optimum value and the
effective steady-state output); third, the time-to-optimum is minimized,
and last, the realizability of a system which only requires occasional
search is established.

Let us consider the case of a plant characteristic represented by the
curve in Figure 7.32. For small deviations from the extremum, the
characteristic is satisfactorily approximated by a parabola

y=Kx2 (7.175)

This particular assumption does not detract from the generality of our
conclusions. It should be stressed, however, that the assumption expressed
by equation (7.175) is physically meaningful. It implies that the structures
we are interested in are potentially capable of ensuring very high transient
and steady-state accuracy. Assumption (7.175) is thus fully justified.

In § 7.5 we have assumed that the noises altering the plant character-
istics are injected directly into the plant and that they can be measured.
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In this case neither continuous nor periodic search is required. It

suffices to find once and for all the optimizing parameters, and the

system is then synthesized as a combined control system along the lines
described in Chapter Five. In reality, however,

7 even if the relevant noise is delivered to the plant
input, we cannot be sure that some other disturbance
will not cause the output to drift from the optimum;
the probability of this drift is the same whether the
input is decreased or increased. Making use of (7.175),
we readily see that drift due to a decrease of the

z input substantially alters the properties of the entire
system, since the plant characteristic is unstable
under these conditions and all the calculations should

FIGURE 7,32, A plant be carried out keeping this instability in mind.
characteristic. For the system to retain the same structure in all
operating modes, a combined-action system should
be built, where the controllable deviations are no
longer the deviations of the output from the reference value but the deviations

d
of 24 from zero.
dy i

It is significant, however, that the proposed fixed-structure systems are
essentially different from ordinary searching systems in the following
particulars.

1, Since the main noise is suppressed, the search characteristics are
chosen so that the searching region and the output searching loss are
minimized.

2, Periodic search is quite sufficient: it is turned on only when the
controlled variable has departed from the optimum by more than a preset
permissible value.

3. A successful synthesis technique calls for a combination of extremum-
holding systems with periodic search.

§7.14. SPECIMEN CALCULATION OF A FIXED-
STRUCTURE CONTROL SYSTEM WITH SELF-
ADAPTIVE PROPERTIES

The example discussed in this section is borrowed from R.J. Kochen-
burger's paper presented at the IFAC Second Congress.

Figure 7.33 is a block diagram of Kochenburger's system (the symbols
have been altered to conform with the usage in this book. The problem is
to maintain the controlled variable y constant and equal to the reference
_K .
Dpy’
parameters of the operator D(p) remain strictly constant, while the gain K
varies between wide limits. In Kochenburger's system the gain varies
by a factor of 100:1, and it is this gain variation that provides the main
disturbance,

value y,.. The transfer function of the controlled object is the
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The author rightly stresses that his solution is considerably simpler
than the conventional solutions, where complex calculators are used to
perform the search. In Kochenburger's solution the product pK is main-
tained constant (p is the controller gain), Therefore, there is an element
measuring the change in K an another element which alters p appropriately,
so that pK=const.

/
Vier 3 >Fr’{/ll_i’r_l> }2” }.,_——

#p/ o/

FIGURE 7.33. Kochenburger's system.

FIGURE 7.34. An element of Kochenburger's system.
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FIGURE 7.35. The oscillatory circuit in Kochenburger's system.

Kochenburger's control scheme, however, is fairly complicated. This
will become the more obvious once the same problem is solved by using
the methods of this chapter.

First we briefly review Kochenburger's original solution. The following
convenient representation of the original system is proposed. Since the
parameters of D(p) are constantand only K is variable and since the controller
operator R(p) 1s also constant and only the controller gain p is altered,

D(p), R(p), K, and p are represented by separate elements, as is shown in
Figure 7.34, where the output signal of R(p)is delivered to the input of
the element with controlled p. Figure 7.35 shows an auxiliary feedback
loop which ensures the appropriate variation in p. This circuit uses a
very-high-gain amplifier with a limiter and a linear feedback element
G;(p). The output signal of the high-gain amplifier is limited by a special
feedback arrangement, not shown in the figure. The amplifier character-
istic thus has a linear section limited between Y,==L. The filter of

the feedback element G;(p)is so chosen that high frequency sustained
oscillations are excited in the circuit for all values of the plant gain K.
These oscillations provide the sampling signals in the auxiliary circuit.
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The angular frequency g of the oscillations should be sufficiently high,
so that the amplitude of the oscillations at the output of the plant (which
acts as the filter) is negligible.

The characteristic of the limiting high-gain amplifier is so chosen that
when no input signal x is delivered, the amplifier has a zero average output.

Now suppose that x takes on a certain constant (say, positive) value,

The output of the high-gain amplifier is biased and the average value is no
longer zero, Ifa, L, and G¢(p) are appropriately chosen, Y, and x will

be nearly proportional to each other, i.e., Y,=ux. If the signal x is
constant, the gain p is proportional to the mean value of the constant
output component of the high-gain amplifier.

Kochenburger has shown that the proportionality coefficient varies
approximately in inverse proportion to K. The sought functional dependence
for the variable gain p is thus obtained. It is moreover shown that the
results are also valid for a slowly varying x. It now remains to vary the
gain p in proportion to Y., so that pK== const,

This method is applied to synthesize the circuit shown in Figure 7.36 for

(7.176)

K
b @) =romraTons

and K varying by a factor of 1:100.

FIGURE 17.36. General configuration of Kochenburger's system.

We now solve the same problem by using the methods of this chapter.
The problem is stated as follows. Find a fixed-structure system (without
a searching element) which maintains the controlled variable Y constant
while the plant gain varies in a ratio of 100: 1, the plant transfer functionbeing

— K
W (P) = oo dFo0mp (7.177)

(a different range of gain variation may of course be assumed).
Three linear amplifiers with a sufficiently high gain are connected in
series with the controlled object. Two of these amplifiers are controlled

1 1 . ’ .
by feedback elements Trp 1 and T FT° respectively. 'The entire control

system takes the form shown in Figure 7.37.
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We proceed to determine the system transfer function., Using the
nomenclature of Figure 7.37, we write

K Ky K K
. Ky ) Ky T 0.2p)* (1 F0.005p)
A NN ©5 (YR €5 7]
Yeer (P) Ky Ky

K
1+ Ky KT oopr o008

Kh
L o i ey )

and after elementary manipulations

Y _ Ki (14 Typ) (1+ Top) K
V@~ (14 Typ+ K) (0 Top+ K) (14 02p) (14 0.005p) +
+ K3K (14 Typ) (1 + Typ)

(7.178)

Dividing the numerator and the denominator by K> and putting[z——;m,
h

we write

Yy __ K(A+4+Tip)(14-Tep)

Vi) — P, ' (7.179)
where

Py=m3(1+4-Tp) (1 4 Top) (1 +-0.2p)* (1 4-0.005p) +
+m2 (2 (Ty+ T3) p}(14-0.2p)2 (1 4-0.005p) +
+m(1-40.2p) (14-0.005p) 4+ K (14 T,p) (1 + T,p)
or
: Y _
’11210 vy = 1" (7.180)

In other words, we succeeded in compensating the gain variation and
incidentally obtained a high-quality control system. In order for the
results to be realizable, the system should be tested for stability as m -0,

# K

N
X
>

N

4
-

7hz 74i2p

FIGURE 17.37. Illustrating the solution of Kochenburger's problem.

The characteristic equation is obtained by putting the determinant of
(7.179) equal to zero, thus:
m*(14T1p) (1 + Top) (1 +0.2p)2 (1 4-0.005 p) +
+m2|(Ty+T) p+-2] (14 0.2p)2 (1 +0.005p) +
+m(14+0.2p?2(1 4+0.0050) + K (1 + T, p) (1 4 Top) =0. (7.181)

236




The degree of any two successive polynomials decreases by one, and we
thus have an auxiliary equation of the first kind. After some manipulations,
we obtain the auxiliary equations in explicit form:

0.0002T, T5g® +0.0002 (T; = T) g2 -+ 0.0002g - KT, T, =0. (7.182)

The coefficients of this equation should satisfy Hurwitz' criteria. The
constraint imposed on K is "

K<°‘L'°2T(f7;i@. (7.183)
142

Hence we can readily choose the time constants that ensure stability in the

entire range of gain variation; thus, for I'=7,= 0.01, we have K<400.

In other words, the gain may take on any value from zero to 400,
Kochenburger is concerned with the case of a system which canaccommo-

date a gain increase by a factor of 100:1. Our stability range is much

wider than that. The degenerate equation

(14 T1p) (14 T2p) =0

always satisfies Hurwitz' conditions. If the plant time constants are 1, 1,
and 13, relation (7.183) takes the form

K<_ﬁ_fzj;%%§—l—jz_)_ (7.184)

In conclusion there is one other problem to be considered. In Kochen-
burger's paper it is assumed that the rate of gain variation may be com-
parable with the time rate of transients in the system. It is clear from
our result (equation (7.180)) that for sufficiently high gain the transients
are very short-lived and no additional tests are required. However,
if the gain is such that the transient time constant in the system is
comparable with the time rate of variation in K, the solution is valid
only if the system is additionally tested for absolute stability in the
given K range. This testcanbe readily made using V. M. Popov's method [1/.

The theoretical performance of the system shown in Figure 7.37 was
tested using a model. The plant time constants were w.= 0.2 and ;= 0.005,
i.e., the same values as in Kochenburger's paper. The stabilizer time
constants were T1=T;= 0,01 and the plant gain varied from Kmyn= 0.1 to
Kmax=10. The amplifier gain was K,=200.

Figure 7.38 is an oscillogram of the process for K=10 and Figure 7.39
is the oscillogram for K=0.1. Figure 7.40 is an oscillogram of a system
with a sine-law gain K varying at a frequency ws=1 cps. In all cases Y. =1.

FIGURE 7.38. Oscillogram for K= 10.
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FIGURE 7.39. Oscillogram for K= 0.1.
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FIGURE 7,40, Oscillogram for K= 56— 4 sin 6.28 £,

We see from these oscillograms that:
1. The steady-state value of the controlled variable is the same in all

cases, i.e., the system indeed maintains the controlled variable independent

of the plant gain and its variation.
2. The transient is virtually the same in all the three cases, an

obviously satisfactory result.
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Chapter Eight
VARIATIONAL ASPECTS OF MULTIVARIABLE CONTROL

§ 8.1, MULTIVARIABLE CONTROL AS A
VARIATIONAL PROBLEM

We have noted before that multivariable control systems can be divided
into two classes with fundamentally different optimization behavior. Since
this division is of the utmost significance for correct choice of optimality
tests and efficient design of control systems, we will go into this problem
in some more detail.

In Chapter One we analyzed the problem of strip gage control in hot
rolling mills and found that the quality of the metal depended on the
precision with which a number of parameters were controlled, e.g.,
main drive speed, roll position, etc. However, improvement of the
dynamics of each individual controlled variable does not necessarily mean
that the system as a whole is optimized. Optimizing is attainable if the
control of the individual variables is aimed from the very start at the
principal target, namely achieving the necessary geometrical dimensions
of the rolled strip.

Another example is provided by oil reservoirs, which were considered
in Chapter One as an object of multivariable control. Efficient exploitation
of the field, in the sense prescribed by our problem, is attaining maximum
output (in the limit, draining the reservoir of all its oil) in the shortest
possible time and at the lowest possible cost. Constant field operating
conditions are maintained by sinking additional injection wells through
which water is driven into the strata, and the field parameters can be
regulated by adjusting the working conditions of these injection wells.
Field exploitation, however, is further constrained by the large-scale
requirements of national oil industry. In principle, oil fields can be
worked in a multitude of different ways, while in practice the output is
limited by the capacity of the equipment. Now, even if the equipment
limitations have been allowed for, we are still left with a variety of well
exploitation conditions and it is our job to select the optimal alternative.

The oil-and-water-bearing strata in conjunction with the well constitute
a single hydrodynamical system. If the outputs of some of the wells are
altered, pressures and flow patterns in the entire field are affected. For
example, enhanced exploitation of a number of wells only, with continued
injection of water, will eventually lower the stratal pressure, and many
wells may stop producing; moreover, formation water may penetrate into
the region of reduced pressure, and some wells will be prematurely flooded.

239




Well depletion and flooding raise the cost of field exploitation. It is
clear, therefore, that the well operating conditions should be chosen with
due consideration to economic factors.

One of the fundamental requirements in planning the well pattern is that
the formation pressure distribution comply with the desirable working
conditions and, in particular, the possibility of natural flow. This of
course imposes additional restrictions on oil field exploitation, and it is
by no means certain that the result is the optimum. The point is, that the
real oil reservoir is inhomogeneous in its physical and chemical properties,
so that each well has a different potential. Moreover, starting at a certain
stage of oil field exploitation, the wells are all flooded in varying degrees.
The flooding is generally more pronounced in wells with high production
rates., It should therefore be understood that driving a well at a maximum
rate of production may eventually lower the output and increase the produc-
tion costs for the field. On the other hand, hopelessly flooded wells can
be "suppressed’ (or even discontinued entirely), so that the total oil output
increases markedly. We are thus clearly faced with a variational problem
of optimizing the oil production conditions under a given set of constraints.

In the two cases above, multivariable control provides an adequate
solution of the problem, and each individual variable should be controlled
in such a way as to extremize some generalized quality index
of the system as a whole. In this chapter we will consider the detailed
solution of the problem in application to the simplest case of oil field
exploitation,

All the preceding refers to systems of one class, The other class
includes multivariable control systems which are optimized by optimizing
every individual controlled variable. We will show in the following that
in this case also the control equation is obtained by solving a variational
problem.

§ 8.2. APPLICATION OF LINEAR PROGRAMMING

The linear programming (LP) problem can be stated as follows: find
a vector y(y, ..., y») maximizing (minimizing) the linear form

R=§Ict!/iv (81)

where the variables satisfy the linear constraints
;20  (j=12,..., n) (8.2)

and
anr+ayls + .. Aay,=by,

Cmth + Ao+ -0 Qi+ o FCppy, = by

where a;; b;, and ¢; are known constants and m<n.
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In matrix form the general LP problem is written as follows: maximize
(minimize)
cr (8.4)
subject to the condition
Y>0, AY=b. (8.5)

Here C is a row matrix, Y a column matrix, A=[a;la mXn matrix, B a
column matrix.

In Chapter One we derived a set of algebraic equations which, under
certain conditions, approximately describe the behavior of an oil field.
These equations are based on the assumption of linear seepage (Darcy's
linear law of filtration) and rigid operating conditions, The relation
between debit and pressure in a well is given by the expression (see
Chapter One)

AQ=AP, (8.6)

where A is a regular mXn matrix, Q and AP are n-component column
matrices. The elements of the matrix 4 are found from the relations

AP
@y =55+ (8.7)

For n producing wells the matrix equation (8.6) is a set of n linearly
independent equations which for Q; >0 define the boundary of a closed
convex polyhedron. If P; and Q;are varied, the hodograph of the vector
Q: will fill a certain domain containing all the points of the convex set.

The matrix equation (8.6) in this case may be clearly given by the inequality

AQ < AP

or, alternatively,

n
jZ_‘alaqu< AP, (8.8)
i=12 ..., n).
The preceding discussion also has a vivid geometrical interpretation.

As an example, consider production from two wells. Relations (8.8) take
the form

alle+a12Q§<Pk—Pf, ] (8.9)
anQi+anQi < Py —Ps.

Here p denotes the producing well, k the pressure on the field boundary;
P, is the well pressure. Geometrically (8.9) describes a convexquadrangle
OABC (Figure 8.1), which is obtained in the following way. First put
Q>0 and Q.>0. We are thus concerned only with the first quadrant of the
Q1,Q: plane, limited by Q=0 and Q,=0.

Now consider where the first inequality of (8.9) reduces to an equality,

anQi+ 212Qs =P — P} (8.10)
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The half-plane containing all the solutions of inequality (8.9) (the first
inequality) is located below and to the left of the line (8.1 0). The equation
of this line is

p,—P°
Q=—tQl+ 211 | (8.11)

ag

The intercept of this line on the Q, axis is

ki (8.12)
7} )
and its intercept on the @ axis'is
P,— Pl
— (8.13)

The second line is constructed in the same way. We thus delineate
a region where expression (8.6) holds true.

5 &L \i&v

7
4

FIGURE 8.1. [Iliustrating the linear
programming problem,

Now consider the linear form

v=0Q;+ Qa (8.14)

which gives the total output (water and oil) of the two wells. Let us
maximize the total output. This is best done by a geometrical construction.
For particular values of v expression (8.14) describes a family of straight
lines which are marked in Figure 8.1 as XY. The maximum is attained at the
point Qu, @ where the line XY is tangent to the convex quadrangle (point B in
Figure 8.1). The output is thus maximum when well 1 produces Qy and
well 2 produces Q. This result holds true if the only constraints are
those imposed by the inherent properties of the oil reservoir. In what
follows we call these constraints the technological constraints of the
variational problem.

Linear programming is thus applicable to optimizing multivariable
control systems described by linear algebraic equations with a generalized
quality criterion, which is a linear form in the controlled variables,
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§ 8.3. THE PROBLEM OF OPTIMUM OIL-
FIELD EXPLOITATION

The applicability of linear programming to oil production optimizing
was illustrated for the simple case of two producing wells. Let us now
consider a more general case often encountered in practice.

We have already discussed some technological constraints. The main
parameters to be constrained are the permissible and the maximum
formation and well pressures. In practice AP can be arrived at by con-
sidering the permissible and the maximum well pressures. The various
requirements of the production schedule for the different parts of the field
and the redistribution of flow streams needed to control formation water
circulation can be satisfied by forming linear combinations of some
components AP;.

However, optimum production schedule depends not only on the inter-
relationship between wells and the maximum pressures in production and
injection lines. Another class of restrictions are connected with the
limited capacity of equipment:

;Qj<Q (j=mv"'! I)- (8.15)

In what follows constraints (8.15) will be regarded as the production
constraints of the variational problem. Relations (8.15) correspond, e.g.,
to pumping restrictions associated with the productivity of water-disposal
equipment or intermediate water-pumping stations. Similar inequalities
may represent production restrictions because of insufficient through
capacity of demulsifying plants, storage pools, gravity-flow and head-flow
collectors.

There are also restrictions of purely economic character. The majority
of economic constraints are associated with capital outlay. In well
optimizing it is assumed that the plant (i.e., the number of wells and the
well pattern) is given. The capital investment may therefore be regarded
as constant during a certain period of time. Since the investment does not
change, the economic constraints are ignored at this stage.

The choice of the optimum well pattern is a complicated problem of
independent interest, and we will not go into it here.

Consider the field exploitation charges, which can be itemized as a
function of well outputs. The power requirements can be written as a
linear function of the outputs, thus:

;b,Q,<N, (8.186)

where b; are the charge coefficients, N the power restrictions.
Production planning criteria impose additional constraints of the form

Sca>e. (8.17)

where C; is the proportion of oil in the fluid lifted from the i-th well,
Q. the oil production target.
The variational problem cannow be stated in two alternative forms:
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(1) Find well operating conditions ensuring maximum total oil output
under given technological, production, and economic constraints.

(2) Find well operating conditions ensuring minimum production cost
for the planned output under given technological and productionconstraints.

In principle, the two statements are identical. Therefore, without loss
of generality, we will only consider the problem of maximum total output
under given constraints, where the functional (the object function) is written
in the form

FQ=3cae (8.18)

The set of equations specifying the technological constraints are thus
combined with expressions for production and economic constraints. If
the combined constraint matrix is designated K;;, we arrive at the following
statement of the variational problem:

Optimize
; C.Q, (8.19)
given
&N <IIT - : (8.20)
and
Q,>0. (8.21)

Here | Ki;1l is a rectangular mxn matrix with m>n; [T |l is the m-component
constraint vector (column matrix).

A few words about the coefficient C;. It is defined as the proportion of
oil in the pumped fluid: C;=1 indicates that the well produces pure oil,
whereas C;=0 means that the fluid contains no oil altogether (as is the case
in injection wells, say).

§ 8.4. A NUMERICAL EXAMPLE

The theory of the preceding section can be illustrated by a numerical
example. The data below do not apply to any particular reservoir, but
they are nevertheless typical. Consider a sector with six wells. Figure 8.2
shows the well pattern and the formation boundaries; the numerical values
of the hydraulic resistance are also given. This information is sufficient
to write the equation of linear seepage. The figures were obtained from
(8.7) using a grid model.

Wells 1 and 6 are injection wells, so that €, and C; are both zero (the
fluid is pure water). Wells 2, 3, 4, 5 are producing wells with mechanical
sucker-rod pumping, electrical centrifugal pumping, natural flow, and
hydraulic long-stroke pumping, respectively. The proportion.of oil in the
fluid lifted from these wells is respectively 0.4, 0.9, 1, and 0.1,

The maximum output differs from well to well depending on productivity
coefficients, formation and well pressures, and also the layout of auxiliary
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TABLE 8.1

Specifications Constraints Justification

1 | Injection well pressure not to ex- PPy Direct experiment with the water pumps
ceed the allowed maximum of connected to one of the wells
the equipment

2 | Producing well pressure not below P> (P Calculations based on pump stroke
a certain limiting figure length and minimum self-flowing

pressures

3 | To ensure stable natural flow, the Pyl g0 [P Calculations based on item 2 under
dynamic formation pressure for given output restriction
well 4 not to be less than a
certain limiting figure

4 | To prevent gas invasion, the Pyl g=02Ps The equipment will 1ift at well
dynamic formation pressure for pressures below saturation pressure
well 3 not to be less than satura-
tion pressure

5 | To avoid premature flooding of Q> Qs Analysis of depression regions on the
well 4, the water tongue in the grid model
dangerous direction 3—4 should
be tied to well 3

6 | Siphon output and secondary re- Q, < 1Qi] Direct experiment
covery water pump output not to Q: <t
exceed certain limiting figures

7 | Through capacity of the well 3-to- Qg < [Qg] Calculations and direct experiment
well 4 gravity-flow collector not
to exceed a certain limiting
figure

8 |Demulsifying plant productivity not Qe < [Qql Direct experiment and statistical
to exceed a certain limiting figure data

9 | Product released from storage pool n<n) Consumer requirements
to meet certain quality standards

10 [ Power requirements not to exceed N L [N] The statistical dependence N=N(Q)

a prescribed figure

is derived empirically

TABLE 8.2
Well number
Output
1 , 2 , 3 4 5 6
Q 1185 100 | 25 25 0 125
C,Q; 0 40 | 225 | 25 0 0
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storage and processing installations. Figure 8.3 shows the general layout
and the communication lines. It is assumed that the technological, produc-
tion, and economic constraints are all known. The relevant information

is listed in Table 8.1,

araan
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12 }J'EI | A W58 4 le
=25 5121 sl251 3 |a] |4
24 712] 7 J |7 J
z| ¢+ |z]elsTez[7] [7
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2 £ J
FIGURE 8.2. Oil reservoir data.
éP\— F Storage pool
Demulsifying
plant
S
R Oil pump

FIGURE 8.3. Layout of oil-field installations.
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The problem is to find well operating conditions that ensure maximum
oil production under the given constraints. Using Table 8.1 and the
numerical data, we formulate the following mathematical problem.

Maximize the linear form

Q

Q.

Qs

[0, 0.4, 0.9, 1, 0.1, O (8.22)

Q

Qs

Qs

under the given constraints

072 —011 —011 —012 ~006 006 70
—011 092 008 011 006 —009 || Q 105
—011 008 235 019 010 —012 Q, 140
—012 011 019 555 011 —012 Qs < 120
—006 006 010 o011 181 —oti||Q,f | 70
006 —009 —008 —012 —011 043 || Q, 50
—000 000 —100 100 100 000 |l [ Q, 0
—011 008 000 919 010 —008 110
—012 011 019 000 011 —012 0
100 000 000 000 000 100 250
000 000 100 100 000 000 50
000 100 000 000 100 000 100
000 —040 100 —100 000 000 0
020 005 007 000 000 020 95

The problem was solved by the simplex method, and the resulis are
listed in Table 8.2. /

§ 8.5 SOME GENERAI CONSIDERATIONS

We should first justify the application of linear programming to the oil
field exploitation problem. In the general case of a plant without memory
with constant coefficients in the algebraic equations describing its behavior,
linear programming can be used to a considerable advantage, especially
since the numerical algorithms of this method are easily adapted to
digital computers. Straightforward application of linear programming to
oil production control, however, would be somewhat improper, since no
real oil reservoir is actually maintained under steady-state conditions.

The coefficients a;; entering the initial equations of the technological process
and the constraint inequalities are variable in time, and not constant. In
some cases the coefficients a;; change very slowly and gradually (e.g., in
the case of migration of the formation boundary), whereas sometimes they
will change abruptly (as when the target figures are modified).

The resulting difficulties can be overcome if the coefficients are ad-
justed as we go on, to meet the change in standards and specifications.

The main difficulties thus arise due to the requirement of systematic
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adjustment of the coefficients a;;, which are dependent on the state of the
oil reservoir. The values of these coefficients can be determined in
practice only by using each well successively to introduce a certain
disturbance into the process, while decoupling all the other wells, whose
operation is stabilized with respect to the disturbance parameter,

Such operating conditions can be achieved by automatic stabilization of
well operation. However, the direct experimental approach does not
appear particularly promising in view of the
exceedingly slow transient in the well-formation
system and the rapid reduction of coupling with
the distance from the source of the disturbance.
Figure 8.4a plots the pressure recovery in a

¢, days
g 7 2 3 4 5 ¢

“ well distant 500m from the disturbing well,
10 which stopped producing at {=0, Before that,
5 the stopped well had operated for a long time with

constant output /40/, We see from the curve that
20 direct experimental determination of a;; requires
Zj/—- well observations over a number of months.
a Besides being impracticable, this approach is
inadequate since during such a long period other
, days formation parameters may also change appreciably.
0o 2 4 & & W The coefficients a;; can be obtained by direct
experiment only if special well stabilizing systems
/—_ are provided (see Figure 8.4b). In this case a
model of the controlled object is incorporated in
the control system and updated at fixed intervals
~8.,=8 b on the basis of current information on formation
structure obtained by geological, geophysical,
and hydrodynamic methods /72, 75/. Successful
FIGURE 8.4. Transients in an models have been actually devised for more or
oil-bearing formation. less uniform formations /72, 75/, but no adequate
grid models have been built for the general case
of a reservoir of complex structure, The main
difficulties are associated with the determination of the mathematical
nonuniformity function of the formation.

The control system described in the preceding section is suitable for
homogeneous or quasihomogeneous formations, where the structure of the
producing strata is such that the distribution of inhomogeneities between
any two nearby wells is constant or follows the distribution of stationary
random events.

The flow chart of a control system of this kind is shown in Figure 8.5.
The basic elements are the grid model used to determine the corresponding
coefficients a;; and a digital computer that calculates production schedules
for each well.

The difficulties associated with the slow variation of the well coupling
coefficients are overcome by periodically updating the position of the
oil-water boundary on the grid model.

As the process drifts from the optimum or when the target figures are
changed, the entire closed-loop control system is turned on (Figure 8.5).
When the wells have been restored to the desired operating mode, the
computers are disconnected and only the local control systems and the

£,-P =45, atm

Fp=F =4F, atm
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data-processing system are left running. The local control systems
maintain the given operating mode in the interval between successive ad-
justments, and the information received from the wells through the data-
processing system and through other channels is used to update the grid
model, When the need arises, the computers are again linked into the
system, and the entire cycle is repeated. Statistical forecasting techniques
can be used to calculate the coefficients ay;.

Plant
model #

I

..[ Switch  Hp p
l |

Control computer
Ws

8 I R L e
processin -
Pcomputelg S — —=-[tr0] system

A Wy

+

Control plant (oil
reservoir) i | P e——

b
dh gJ--~

FIGURE 8.5. Flow chart of automatic control system

The solution of the problem is based on the assumption of a rigid
operating mode (see Chapter One). It has been established, however, that
immediately following the disturbance (when a well is stopped or actuated,
etc.), the oil reservoir behaves according to a so-called elastic mode /75/.
Although the processes in the reservoir may remain linear in the sense
that the principle of superposition holds true, linear programming in its
standard form is inapplicable. It is therefore again emphasized that our
solution is valid for a reservoir in a rigid operating mode, which is the
predominant but not the only mode. '

§ 8.6, METHODS FOR THE DETERMINATION OF THE
CONTROL VECTOR AS A FUNCTION OF TIME IN
MORE COMPLICATED CASES

In the preceding sections linear programming was used to determine
the operation schedule for each oil well. This approach is valid as long
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as the controlled object (e.g., the oil-bearing formation, ignoring its
elastic properties) is described by a set of linear algebraic equations.
The planning and production constraints were represented by appropriate
algebraic equations, and the solution was obtained in the form of a
numerical programme, or schedule, for each well.

For objects with memory the control function cannot be obtained in this
simple form, but the problem is nevertheless meaningful for some more
complex cases. Let us first consider the new features arising from the
formulation adopted in this section, although the problem itself is basically
equivalent to that considered in the previous sections. All the properties
of the controlled object and all the constraints are known; we seek a con-
trol function, i.e., the variation of the inputs as a function of time, that
minimizes (or maximizes) a certain criterion function. The control time
is often chosen as the criterion. The problem thus reduces to a selection
of a control function which ensures a minimum transient time for the given
plant under the given constraints.

The optimal solution in this case is to choose, from among the control
functions satisfying the given constraints, one which moves the system
from the initial to the final state in a minimum time. This formulation is
not different in principle from that used for most optimal control problems
/21,53/. The literature on the subject, however, is mainly confined to
single-variable systems /17, 25,28/. P.E.Sarachik and G. M.Kranc /21/
solved the problem of minimum transient time for multivariable control
systems, but their solution is based on the results of Krasovskii /25/,
Kirillova /17/, and Kulikowski /28/, originally obtained for single-variable
systems.

A remarkable feature of the above studies /17, 25, 28, 21/ is that the
problem of optimum control is solved by methods of functional analysis.

In our opinion, the application of functional analysis may prove to be
highly promising, and we therefore reproduce the results of Sarachik and
Kranc [21/ in some detail. :

We are dealing with time optimal control of an absolutely controllable
linear object with certain constraints /21/. Different constraints may be
imposed on each input.

The controlled object is described by the following differential equation:

x=F@)x(t)+D{)u(t), (8.23)

where x(f) is the n-dimensional state vector of the object at the time ¢,
u (1) is the r-dimensional control vector, F(f) is a nXa matrix, D(/) is a
nXr matrix. It is clear from this notation that the plant has r inputs and

n outputs. In general, the system output is a vector y({) related to the
plant inputs by the equation

YO =p@)x(), (8.24)

where p(f) is a mXn matrix,
The initial state of the plant at the time t=# is described by

X () = X, (8.25)

By y.:(f) we denote the signal to be reproduced. The constraints imposed
on the plant inputs u(f) are given by :
1

1 ) ‘p—l‘
b by = [f lui(m”dr] <L, (8.26)
ID
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where
p:i>1 and i=1,2, ..., r.

It is significant that p; and L; may be different for each input, i.e., for
each i{. This means that the constraints on the components of the input
vector depend on the inputs themselves; thus, for an amplitude-limited
input p;=1, and for a power-limited input (some other «; ) p;=2, etc.

The problem is thus formulated as follows. Find an input #,(f) which
satisfies constraints (8.26) and ensures equality of the output signal y ()
to the setting y.(f) at the time {=#, so that T=#{ —¢ >0 is minimum.

Following N.N.Krasovskii /25/ we can give an alternative formulation
of this problem. Given the plant equations, constraints, and initial con-
ditions, find a control vector u (f) of minimum norm | #|l, which ensures
the equality y(f;)=y.(¢) in a predetermined time #. The solution ensuring
the fastest response is then determined from the solution of this problem,
and the minimum time corresponds to the case when the minimum norm
lall,is exactly 1 [/25/.

Using the Duhamel integral approach, we write the solution of the set
of differential equations (8.23) in the form

£(O=0(, t) %+ [O(t, VD) u (¥)dr, (8.27)
ID

where ®@(f, v} is the fundamental matrix of the plant equations satisfying the
condition ®(f, t)=E. In [21/ it is called the transition matrix.
The output signal y (f) is thus given by

YO =n(t, )0 t) 0+ [BODE YD (Hu () dr. (8.28)
Equation (8.28) can be simplified in the following way. Let
e()=y () —un() D, t)x (8.29)
and
H{t, ) =pn (@)@t 1) D (), (8.30)

where H(t, 1) is the mXr matrix of weight functions of the controlled
variables in all the channels; e(f)is the difference between the actual out-
put signal and the output signal caused by the initial disturbance alone,
when no input is received for ¢>t;,, In this notation equation (8.28) is
written as

¢
e®)= [H(t, Yu@ds. (8.31)
S

To solve the problem, we thus have to find the control vector #(r) with a
minimum norm | 4fl, satisfying the integral equation

t
[ Hew Du@dr=e, (), (8.32)
t )
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where
€. (6) =Y (t)—n (t) D (¢, to) %o

The vector equation (8.32) can be replaced by m component equations

[ 1t D@ dr=c.;t) (8.33)
£

=12, ..., m).

Here k;(f, 1) is the j-th row of the matrix H(¢ 1), and e.;(f) is the j-th
element of the vector eq(#;). Since the object is absolutely controllable,
there is at least one control vector satisfying the above conditions at an
arbitrary time #, and the vector with the minimum norm [#ll; should be
selected from among these alternatives.

Let the set of control vectors satisfying (8.33) be us. Consider the
functional

Falt)= [ (. Du@ar, (8.34)

where .ﬂ“t) is an element of u4. Hence,

Fall)=e.(t). (8.35)

Since f4 is a linear functional, we will consider arbitrary linear com-
binations of #&;({, 1) of the form

k(tlr)=]gl7kjh,-(tlt)=lH(L‘I, ), (8.386)

where X is an m-dimensional row vector, so that applying (8.35) and (8.36)
we write

Jalk)y=1/f4 </§1 7»;'”;') = él}"ij (h)) = Ae ,(¢); (8.37)

this equality holds true for any k({;r) described by an equation of the type
(8.38).

Further solution of the problem is associated with the concept of the
general norm of a vector [21/. How are we to write the set of r constraints
of the form (8.26) as a single constraint? This can be done by defining the
norm of the control vector # as

llu]| = max (EAAE (8.38)

Now, if the single condition
llel <1 (8.39)

is satisfied, all the r inequalities (8.26) are fulfilled, so that the single
condition (8.38) is in effect equivalent to r constraints.

Since relations (8.38) are not very useful in their original form, the
solution can be simplified by further generalizing the definition of the
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norm of the vector#(f). The most general norm is defined as
, Up
ta=[ a1t ] (5.40)

where p>1 and |#,ll,, are given by (8.26). The results of Kirillova /17/ can
be used to show that for p— oo the solution of the problem with a bounded
llzli, approaches the solution with a bounded ||, so that constraints (8.26)
are replaced by the single inequality

fal, <1. (8.41)

The solution of the original problem is thus obtained by first solving the
problem with constraint (8.41) and then letting p— oo.

We now return to the solution of our problem. Using (8.26) and (8.41),
we obtain

f g,
nk,-uq,-E[ [ 1kt T)I'”dr} (8.42)
0
and
r g
Ill«?il=[1§1 h‘i’”k,-ﬁ:i] , (8.43)

where k;(#;, 1) is the i-th element of the row-vector k(¢r) defined by (8.36),
and g¢;,q are related to p;, p from (8.40) by the equalities

1 .

I

1 1
4, + P;
and

+L=1.

-

L
7

Consider the quantity (fall, the so-called norm of the functional f, [28/,
defined by

_ fa (k)}
ﬂfAll—mEX{W . (8.44)
where # is from (8.36). Using (8.36), (8.37), and (8.44), we find
quu=m§x,'i"=—f“""=lmax {m—l—} (8.45)
Ay lref=! A
El i, ng i,
Let A* be the vector whose coordinates minimize the norm i A on
=1 '

condition Ae(f)=1. Then

min “ ﬁ },,-q,” =”§ P “ =&, (8.46)

Aen.’,f-l,lj=l q j=1 I q o
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Under these conditions equation (8.37) may be written as

\

oAl =1, (8.47)

To proceed further, we require the generalized Hoelder inequality.
Hoelder's inequality for sums is /33/

[3e] [30]" ot

2 ob;

i=l
and the equality is obtained if and only if
o, =Fk|p,I"" 'signp, for i=1, 2, ...,n, (8.49)

k being an arbitrary constant. We are interested in Hoelder's inequality
for the integral

] b n
[xoy@mat=[Yx@ywear (8.50)
[ 4 a i=1
We have to prove that
b n 1p n g
[=@y@®at|< [ZL,—"nx,nzl} [Edny,n:,J : (8.51)
a i=1 i=1

where
1,1

p>1, g>1 and S+o=1

b x, (£) IP“and ly: (0 |"’]are integrable, and [, are positive quantities. Moreover,

b 1p;
Hx,ll,,l=[ |x,(t)|”'dt] (8.52)
a
and b Vg,
uy,ﬂq,=[ ly,-(tn"'dt]
for ‘
1 1
=zl 21, —’T‘FZ——-I-

We first prove that inequality (8.51) reduces to an equality if and only if
x, () =Ly 71y, 0% sign y, (¢) (8.53)

for any a<t<b, any i=1, ....n, and an arbitrary constant k.
Hoelder's integral inequality is generally written in the form

g

b b Yo b 1
fX(t)y(t)dt'<[flx(t)l”dt] [fly(t)l"dt] (8.54)
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with p>1, ¢>1, %+%=l and integrable |x(#)]” and |y(¢) | the equality
is obtained if and only if
x(t)="k|y(&)" " signy (®), - (8.55)

k being an arbitrary constant.

It has been proved /21/ that these results hold true for p=land ¢=1. It
has been further established /21/ that Hoelder's inequality for sums (8.48)
and condition (8.49) hold true for p=1and¢=1 To obtain Hoelder's in-
equality for the integral (8.50), we note that

b n n
[Yx@yma|<) f X0y df, (8.56)
a i=1 i=1
and the equality is obtained if and only if
x(#)y; () >0 [or x,(8)y, () <0 (8.57)
for at<bandi=1, ..., n.
Using Hoelder's inequality in the form (8.54), we find that
b
JEAGIAG) dt\@mn,,iuy, k, (8.58)
a

for p;>1, ¢, >1 and +—=1 where | x, (t)ll’z and Iy,-(t)[ql are integrable.
Using (8.55) we find that (8.58) reduces to an equality only if

X () =K;|y, () Jusigny, () for eLEi<h (8.59)
Substituting (8.50) and (8.58) in (8.56), we find :

b n
[ =@y @at|< Blxl, I, (8.60)
a i=1
If (8.59) holds true for any i=1, ..., n and if all K; have the same sign,
condition (8.57) is satisfied. ThlS means that the equahty in (8.60) is
obtained if and only if (8.59) holds true for any i=1, ..., n and all K; have
the same sign.
Let
-l
X = Ll"‘
and N (8.61)
Y=Ly,
where L; 1s a positive constant.
%: and y; being positive, we have
3 25.=| 3 %5/ (8.62)
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Using (8.48) and (8.49), we find

n n Upr p lig
glx‘y‘!<[¢§,|x‘lp] [§l|)’1|q] s (8.63)

where p>1, g >1 and%—{——‘-ll-:l, and the equality in (8.63) is obtained if and
only if '
2,=E|§,|”l"sign§l (8.64)

for all ;, £ being a positive number. Since % and ;,. are positive, con-
dition (8.64) takes the form

21=.k§g_l' (865)

Substituting (8.61) in (8.63) and making use of (8.60), we obtain Hoelder's
generalized inequality in the following final form:

f x(O)y(r)dt| <

[ZL,"nxz ] [Edlly,ll‘;l] . (8.56)

Inequality (8.66) reduces to an equality if and only if (8.60) and (8.63)
are fulfilled. This means that the following two conditions must be satisfied:
(a) all K; are of the same sign;
(b) relations (8.59) and (8.65) hold true.
Consider relation (8.65). We have

S R 4 2 1p,
=L al=L"| [lueda| =

=Ryl =Ryl (8.67)
Ingerting for |x;] in the integrand its expression from (8.59), we find
-1 Trq— -
L3 Ko7 = RLE il . (8.68)
or, solving for {Ki|,
|K,|=kL|g, [~ for i=1,2 ..., n (8.69)
i

For this reason, if K; in (8.59) is chosen so that (8.689) is satisfied,
(8.66) is fulfilled automatically. K; may be either positive or negative;
the only point is that they should invariably be of the same sign. This
means that (8.69) and conditions (a) and (b) can be replaced by a single
condition

K,=IzL‘,’ﬂy,"::"l (8.70)
for all i=1,..., n.
Substituting (8.70) in (8.59), we finally obtain
x,(t)y= kL " ¥, ﬂ:l“" |y, (&) [ sign y (8) . (8.71)
for agt<b and all i=1,2,.

256




We now return to our original problem. Consider the functional
f
f ()= [ R (t, Du(@dr. (8.72)
1)

Using Hoelder's generalized inequality, we find that
(F, V<L B L ulys (8.73)
and seeing that f, (k)= (¢)=1 we have from (8.47)

[T 9] 1
"u"p = |Akn" |k'"q _“fA " (8.74)

Inequality (8.74) is thus a necessary condition for u(r) to be an element of

the set ug.
From (8.74) we can now derive a necessary condition for #(r) €u, to

have a minimum normllzll,, specifically:

1
"u"p "k'"q ="fA"1 (8.75)

which is obtained if the equality is taken in (8.74) and (8.73). The relations
obtained from Hoelder's generalized inequality show that the equality in
(8.74) is obtained if the components u;(r) are of the form

7 * -1 *
u (1) = kLY & ‘Lz qllki (¢, 1) lql signk; (4, ©). (8.76)
Substituting (8.76) in (8.75), we find the constant &,
1
—_— i
(&1 (8.77)
Equation (8.75) thus holds true if and only if

)= (Hk‘" P R i (b, ) | sign i (4, ). (8.78)

From the results of Kirillova /17/ we further obtain (putting ¢=1 in
(8.75), which corresponds to p—oo )

(0= L&, ™ Lo o™ sign e (81, ), (8.79)

a k‘ ll Ae1)"

where the asterisk marks those quantities which are determined from
A, e,

&), = mi" i§1 Ljk, Ilq‘ (8.80)

on condition e (¢)=1.

To solve the original problem of time optimal control, we have to study
the effect of the constraints. As has been shown in the preceding, all the
constraints can be summarized by a single condition imposed on the norm
of the control vector:

Jaf < 1. (8.81)
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Moreover, for p=oco, ¢=1, and

1

b 1>

(8.82)

Hence it follows that for any f, the problem is solvable if and only if
Jerh>1. (8.83)

Let |&|, be a continuous function of #,; the minimum timeTo=1f] — fyis
then obtained for the smallest #=¢;, such that

12, =1, (8.84)

and this fact is used in the determination of #. If we now apply the solution
of (8.79) with the minimum norm, we find for # =1,

. 1
(2 "=W’ (8.85)

so that the solution given by (8.79) satisfies both the constraints and the
final conditions in the shortest time and is thus time-optimal. Using (8.85)
we find

i (B = L] £} IL’,;"‘lkI &, O signkl (£, 6. (8.86)

where k) is determined by solving (8.80) for A* and substituting the solution
in (8.36), From (8.85) we then find the minimum ¢ equal to £.

We have considered in some detail the theory and the proof of [21/ for
the determination of a control function (as a function of time) ensuring a
minimum transient time for the problem at hand. Despite the apparent
complexity of the method and the introduction of mathematical techniques
which are unfamiliar to most engineers, it seems to us that the effort is
justified by the simplicity of the final solution. We would like to comment,
however, on the practical value of the result, Here the vector of plant
inputs (the control vector) is specified as a function of time, and not as a
function of the plant outputs. This is equivalent to setting up an open-loop
control system, with all the consequences. But there is more to it. The
mathematically derived input vector should be implemented in practice,
and this requires the introduction of special equipment whose properties
have not been allowed for in the mathematical stage. This is a highly
significant point in our opinion, since the complete system, including the
equipment that implements the control function, is essentially different
from the initial system where only the plant properties are relevant. This
remark applies to all solution techniques which produce the control vector
as a function of time. Further on in this chapter we will consider methods
for the derivation of control vectors as a function of the output {controlled)
variables,

§8.7. APPLICATION OF METHODS OF
VARIATIONAL CALCULUS

In this and the following sections we will consider the construction of ‘
multivariable control systems whose properties satisfy a certain optimality
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test. A frequently used optimality test is minimizing the integral square
error of some function of the controlled variables, their derivatives,

and plant inputs /30, 66/. The general problem is formulated as follows.
For a controlled object of known characteristics, choose the control
system, and in particular the controller, so as to satisfy a certain
optimality test. This formulation is fully applicable to multivariable con-
trol systems. In the latter case, however, the optimality test should
correspond to the set of all controlled variables, and notto
some individual variable.

This approach was developed by A. M. Letov /30/ for the synthesis of
controllers in single-variable systems, and he called his technique the
method of analytical controller design. His results are used
here insofar as they are applicable to multivariable control systems. *

The mathematical formulation of the variational problem is the following.
Let the controlled plant have # controlled variables Y; and m controllers x;.
Here m> n. A control system is hooked up for each controlled variable.
For simplicity we will first assume that each controlled variable is described
by a first order equation. Seeing that the controlled variables interact
through the plant, we write for the i-th variable

n mn
Yl=+ailyl+k2aikyk+25jkxk- (8.87)
k;li j=1
Here « is taken with its algebraic sign. Taking i=1, 2, ..., n, we obtain

a complete set of differential equations describing the dynamics of a multi-
variable plant.
The initial conditions for (8.87 are

Y, =Y, i=1,..., n),
for ¢=0 ,
X=Xy /=1, ..., m) (8.88)
for ¢ {Yi:yif i=1..., n),
=0 .
f XJ'=X.” (I=1,.-., m)-

This set of equations can be written for deviations of the plant inputs and
outputs. Taking Y;=Y;+AY; and considering the deviations only, we should
replace Y; Vi, and x,in (8.87) by AY;, AY, and Ax,. The final state of a
stable system is then described by AY;=0, and if the input deviations are
reckoned from a new steady-state level, we have

Ax; =0, f=o0,

In the following we will be only concerned with the deviation of the plant
inputs from a certain prescribed value, but the equations will be left in
the original form (8.87), with Y, Y., and x interpreted as the deviations.

The initial and the final state are then

Y, =V, i=1, ..., n),
X=X, (j=1,..., mj
Y, =0 (i=1,..., n),
X,=0 /=1, ..., m).

for ¢=0 {
(8.89)

for t=c0 [

* Analysis and synthesis of multivariable control systems in a somewhat different form from that presented
here were carried out by Ma Fu-wu as part of his post-graduate studies under the direction of the author.,
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The plant inputs X; are the controller outputs. The controller structure
and parameters are not known at this stage. Our problem is to choose
these unknowns so that the control system conforms to a certain optimality
test.

The variational problem is thus given the following mathematical formu-
lation. Suppose that the criterion function of the optimality test is the
integral

Y(Xp oo X,,,)=det,' (8.90)
0 .

where ,, m
V=ZakY?¢+2j]b,x3. (8.91)
. ]

The integral (8.90) is a functional defined on a certain class of functions,
and its value is the integral square error with constant weights ax, b; that
the system acquires during a transient #*=co. Our aim is to find the
analytical expression for the control function

QWis « v s Ynp Xy oo vy X)) =0, (8.92)

which, in conjunction with the original set of equations (8.87), constitutes
a stable system and minimizes the functional (8.90). Meanwhile we are
dealing with a linear system, or to use the conventional terminology,
equations (8.87) are defined in an open domain. Lagrange's function is

n m
H= V+2k:7~k [Yk — é}“zkyt—igl ﬁ/kxj] (8.93)
or
n n "
H=‘§lakyi +§b1‘x§ "i‘Z}“k [Yllz"“ lZ_lasz: —jzl ﬁkixj], (8.94)
where M are Lagrange's multipliers.
We have
oH oH
Tor = 20aYs 2 My P Aps
oH oH (8.95)
—a—xj——'_—‘2bjxj'—2ﬂjk7~j, E‘;‘:O
i J
The Euler-Lagrange equations are thus
A== 204y5 — ; Aiizn
2b,x, —;MM=0 (8.96)

(k=1,....n j=1,..., m),

and these equations, together with (8.87), define the properties of the multi-
variable control system. Proceeding along the same lines as in /30/, we
can find the controller equations for the multivariable system.

Consider the case of a multivariable control system with two controllers
and two controlled variables interacting through the plant.

260




The plant equations are

)’:1=any1+“12y2+ Buxy, } (8.97)
¥y =gy, =+ Gyl - Paxp.

Unlike the general case, we assume that the controllers do not interact,
i.e., Py=0, i # k. The functional to be minimized is

y(xp, x2)=f th=‘f[alyf+a2yg+ble+b2x§] dt. (8.98)
0 8

Lagrange's function for this example is
H=a,43+ayf+ b} + b3+ A, [y, — o9, — Oyl — By %y |+

Ry [y — 08 — 0y, — Bas s, (8.99)
S_Z'__Qalyl"—'xlall_;“?a?l’ (8.100)
S, ' (8.101)
oy,

il
Ty = 22ty — hilyy — Aotlyp, (8.102)
S 2, (8.103)
0y,
o
T = 2bu6 — b, (8.104)
SH o, (8.105)
0x,
oH
T 2byy — Aoy (8.106)
2H o, (8.107)
0xy

From (8.100) —(8.107) and {8.97) we write the Euler—Lagrange equations
A =2a,y, — Moy, — Aylly,,
Ay=2a,y, — Mo, — M0y
26,0, — Ay =0, (8.108)
2,y — Ay =0,
v =ap 4+ oty 1By Xy
Yy == 0y 4, Oolfy B Xy

The determinant of this system is

p—on  —ap —fBy 0 0 0
—0Og PO Y — B2 0 0
0 0 0 26, 0 — Bos
a=| o w o —p o (8.109)
Y — 2a, 0 0 Gy pt 0y
—2g, 0 0 0 P+ oy Gy

After simple manipulations, we obtain the characteristic equation inthe form
b,b,p* — (0},6,8,+ 030,60, + 20,0, 0,6, + a,b,8%,+
+ab8}) P+ (03,05:0,6, — 20,,0,,0,,0,,b,6, +
-+ @,03,05,6, + a,05,8%, 6, + 03,03,0,6,+ 2 0%p5,0, -+ :
-+ a,93,8},b, -+ a,a,8%,83,) =0. (8.110)

261




The parameters of equation (8.110) should be chogen so as to ensure
stability of the system. First note that the signs of the coupling coefficients
apand oz depend on the properties of the controlled plant, These co-
efficients generally have the sign minus, and in what follows we indeed
assume negative ai; and an. Strictly speaking, the coupling coefficients
may be inherently positive or they can be made positive, as in anelectrical
system with mutual inductance. These cases are not considered here. In
the following we assume that the plant is intrinsically stable {without a
controller). Therefore, given the plant equation in the form (8.87), we
conclude that ¢i; 4Fte also negative. The weights b and b are positive by
definition, and so only th& sign of the coefficients B and By is unknown.
We see from (8.110), however, that this uncertainty is of no consequenceé
at this stage, since Bu and Pz are squared in the coefficients of (8.110)
and their sign is therefore irrelevant. Our preliminary analysis thus
shows that the expressions in parentheses in (8.110) are inherently positive.
The minus sign in front of one of the coefficients in the free term of (8.110)
does not affect this tériclusion, since clearly ai>on; but even without this
condition it is readily seen that in the final account the coefficients of
(8.110) are positive.

Let A, stand for the coefficient of p', Aifor the coefficient of p’, and
A, for the free term in (8.110). Equation (8.110) then takes the form

Apt— Ap+ A, =0.
Substituting
=g,
we find
At — Af+ A, =0, (8.111)

and' the solutions are

—————
oy B A
T 2, 4 A
It is also easily seen that A} >4A,4:, so the roots of (8.112) are positive
numbers & and {. The original characteristic equation thus has four
roots:

(8.112)

b= iVE

Paa=EVE,.

and (8.113)

We will only use the roots p, and ps, having Re p<0. The solution for the
inputs and the outputs in this case is

y,=l§3C,A,(p,)e”l'. (8.114)
Yo =I§3€;Az(pﬂe”f’. (8.115)
X, =p=21. G (p)e™", (8.116)
x2=v§36vA4 (py)e™". (8.117)
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Here Ay, A, As, and A are respectively the minors of the determinant of
(8.110) for the first element of the first row, the second element of the
second row, the third element of the third row, and the fourth element of
the fourth row.

In order to find x, x» as a function of yi, y2, we should eliminate time
between (8.114) —(8.117). The determinant of the controller equations is

A(p) Aips) 4

bs(p) Alps) ta|

Bae) Malp) a1 |70 (8.118)
A (p) By(ps) X2

We see from (8.118) that the equations for x and x are linearly
dependent. The equation of the controller having x, as its output is
obtained from

Ar(p) Bi(pa) w
A () A2(ps) 92 {=0,
As(p)) Ag(ps) X
whence
X = (A5 (£1) Ag (P5) — Az (1) As (P2)] y1 — [A3 () Ay (P1) — A (p3) As (P)] 3 (8.119)

8y (p) Ag (ps) — B2 (py) A1 (Pa)

it is thus clear from this equation that the optimum in the sense of our
analysis is ensured if the controller action is influenced by the two con-
trolled variables y and g,. This confirms our earlier conclusion that
interacting control produces an extremum, and a noninteracting control
system will therefore give poorer results from the aspect of our optimality
test. It is perfectly obvious that the equation of the second controller is
also a function of both controlled variables g and g..

Another highly significant conclusion from this example is the following.
Substituting for A;(p;) their values, we obtain a controller with infinitely
fast response. This result was also obtained by Letov /30/ in an example
of analytical controller design for a single-variable system. The essential
point is that a system of this kind can be built only using structures which
are stable at infinite gain.

In our discussion of multivariable control systems with infinite gain
stability we have shown that interacting control, under certain conditions,
has better dynamic response than noninteracting control (see Chapter Four).
In the present chapter, in solving the problem of a controller extremizing a
certain criterion function, we have established that interacting control is
essential for this purpose and that the system must have infinite gain
stability. This clearly gives collateral support to our previous assertion
that structures stable at infinite gain should be preferred in multivariable
control systems.

So far we have been dealing with a controlled plant whose outputs are
described by first-order different equations. The controller selection
procedure, however, is quite general and can be used with output equations
of higher order. In this case, each of the equations of v-th order, say,
can be reduced to v first-order equations, and Lagrange's function and
the variational equations are then written for each of them separately.

The mathematical manipulations are fairly tedious. even for the simplest
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case of a two-variable system described by first-order equations with
inertialess controllers. Although the difficulties are merely technical and
can be easily overcome with the aid of modern computers, the results are
far from being easy to grasp, especially for the more complex cases.
Therefore, following /30/, we will consider some applications of dynamic
programming to the design of multivariable control systems.

§ 8.8. BELLMAN'S PRINCIPLE OF OPTIMALITY
AND THE FUNCTIONAL EQUATION

In this section we will describe some results due to R. Bellman /7/,
which will be used in the following, The brief exposition here cannot be
regarded as a substitute for reading Bellman's book /7/, but it will
enable the reader to follow the synthesis method proposed for multi-
variable control systems minimizing or maximizing (according to the
particular test used) a certain criterion functional of the system as a whole,

Letov /30/ used Bellman's dynamic programming method for analytical
controller design in single-variable systems. In addition to Bellman's

results, we will also apply here some of Letov's techniques and conclusions.

1. Multistage allocation process and optimal policy

We start with a certain limited quantity of resources x that can be used
to buy equipment of two kinds, 4 and B. If a certain quantity of resources
0<y<« is allocated to purchase equipment 4, and the remaining x—y to
purchase B, the total return, expressed in terms of labor, say, is

Rix, )=gW)+h(x—y). (8.120)

Here g(y) is the return from the allocation y, and A(x—y) the return from
xr—y. The problem is to choose such y in the interval [0, x] that the return
Ri(x, y) is maximized. The maximurn return is thus

Ri(x)= max [g(g)+h(x— g (8.121)

If this problem is solvable, we have a single-stage allocation, to use
Bellman's terminology [7/.

Consider a multistage process. Suppose that after some time in
operation, the equipment is sold, bringing ay money units as the prices
of equipment 4(0<a<l)and b(x— y)units as the price of B. The first
stage thus ends with an additional quantity of resources x,, where

x=ay+b(x—y).

These resources x, are again used to purchase equipment. In this purchase
ys is allocated to class 4 and x, — g, to class B; the return is thus

&)+ lx,—y),
where 0y <x. The total return of the two-stage decision process con-
sisting first in the choice of y and then the choice of y; is thus

R o p)=g @)+ h(x—y+g@)+hix—y) (8.122)
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where

xy=ay-+bx—y)
and (8.123)
0<y<gx, 0Ly <y

The maximum return is attained if y and y, are so chosen that
R:(xy, y, y)) is maximized under constraints (8.123).

If the buy-and-sell process is repeated n times, we obtain an n-stage
allocation process with the total return

Ry(xy 4y Y1 -+ oy Yp) =8 W)+ R(x—y)+g )+ (8.124)
+hie—yg)+ o FE W)+ h(Kny—Yom),

where
Xp=ay;_,-+b(x;_,+y;_y) for i=1,2,...,n—1, (8.125)
=y and x,=
Yo y 0 X, (8.126)
0Cy<x 0Ly <x (i=1,..., n—1).

The maximum total return is attained if the y; are so chosen that R»
is maximized under constraints (8.125) and (8.126). The fact that the
problem is essentially an n-stage decision problem can be applied to
simptlify the solution and primarily to reduce the number of variables.

It is significant that in the k-th stage the problem can be solved if yau
alone is known, The value of y,_, depends on x,_, and the remaining N —#
stages. .

Hence, to decide on a solution for the k-th stage it is important to know
the resources available at that stage and the number of stages to go; in
other words, the problem is as if formulated anew at each stage, with a
given number of stages and given quantity of resources. Following /7],
we introduce two new concepts. The sequence of solutions (y, y1, ..., Yn—1)
is called a policy. A policy maximizing the total return according to a
certain criterion function is called the optimal policy.

2. Formulation of the problem using functional equations
and Bellman's principle of optimality

Let f,(x) be the total return for an n-stage process with initial resources
x and an n-stage optimal policy, n=1,2, ....

We will derive a recurrence relation for f.(x)and fnu(x). Let the initial
allocation be y., and we consider a (n+1)-stage process. If the first-stage
return is g(y)+h(x —y), the total return after the (n+1)-th stage is g(y)+h(x-y),
plus the n-stage return, assuming x=ay+b(x—y)as the resources after
the first stage. The essential point is that, irrespective of y, the resources
ay+b(x — y) are recovered using an optimal allocation policy in the next
n-stages, The total n-stage return will then be f,[ay+b(x—y)].

Hence, the total return after the (n+1)-th stage, with the initial alloca-
tion y between 0 and x, is

gW)+h(x—y)+filag+b(x—y). (8.127)
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Now, y should be chosen so as to maximize (8.127), Since the maximum
is numerically equal to the function f,41(x), we obtain the basic recurrence
relation

fonr ()= max {g()+k(x—y)+Falay+bx—yl} (8.128)

n=1, 2, ...

Let us now compare the two formulations of the same problem. In the
first formulation, we were expected to choose y;, i=1, ..., n—1, maximizing
Ru(%, y, y1, ..., Yynt) , and in the second formulation we had to select n
functions f, for one y. Bellman [7/ has shown that the second formulation
is much more convenient for practical calculations and readily brings out
the dependence of the solution on various parameter changes. In the second
formulation, the function f,4i(x) can be determined if f,(x)alone is known.

We thus arrive at Bellman's principle of optimality: an
optimal policy has the property that whatever the initial state and the initial
decisions are, the remaining decisions will constitute an optimal policy
with regard to the state resulting from the first decision.

3. The fundamental functional equation

Consider the following problem: maximize the functional
T
S(y)= [ Fx, y)at (8.129)
0

with the constraints

dx
—— =G0,y x(O0O=C
and dt (8.130)

0Ly <.

This is an ordinary variational problem which is solved by the methods
of classical variational calculus, with certain conditions imposed on the
functions G(x, y) and F(x, y).

Let us consider this problem from the aspect of dynamic programming.
R.Bellman has suggested that the variational problem can be treated as
a continuous multistage process. In this approach we are not interested
in finding y as a function of ¢ for 0 {< T but rather Y(0)as a function of
the initial state X(0)=C and the time interval T; in other words, we are
looking for a functional equation

FLX ©) TI=F(C, Ty=max¥ (y). (8.131)

Let F(x, y) and G(x, y) respectively ensure the existence of a maximum and
the continuity of f(C, T)as a function of C and 7. It is moreover assumed
that / has continuous partial derivatives with respect to C and T in any
bounded region C>0and T2 0.

Along the extremal y we have

p+T

4
fCo+T)=[F(x, ppat+ [ Fix g)at. (8.132)
0 3
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Fort=p, x is equal to x(p), which is found from the equation

dx
=G y)-

Let x(p)=x(C).
According to the principle of optimality we obtain along the extremal

p+T
[ Fx, gpat=fiCc) Tl. (8.133)
I

The integral (8.129) is thus replaced by the equation
P
F(C, o+ T)=[F(x, pdt+fICE). TI. (8.134)
0
Now y is chosen so as to maximize (8.134). Hence
p
JIC, o+ T)= max | [F(x, g)dt+fICE. Tlp. (8.135)
0”<[y'<]x 0

Let F(x, y) be continuous in x and in y, and have continuous partial
derivatives with respect to C( f¢) and T(fr); if moreover y is a continuous
function of ¢, then for small p we may write

FC. o+ T)=F(C, T)+o2r-+00) (8.136)
Cp)=C~+pG(C, v)+0(p) (8.137)
FC @) TY=F(C. T)+p0(C, v 340 () (8.138)
and
P
fF(x, y)dt =pF (C, %)+ 0 (p). (8.139)
[}

Here v=y(0)=v(C, T). In the limit, as p—0, we find
fp= max [F(c, W-+G(C, v)i]. (8.140)‘
o<v<ce ' oc
In our earlier notation, taking as the criterion function the integral

fF(x, y)d¢ with the constraints
[

%=G(x1 9

we write Bellman's functional equation in the form
of
myin[F(x, §)-+GC(x, y)o—x]=f,-. (8.141)

The material of this section is sufficient for further discussion,
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§ 8.9. APPLICATION OF DYNAMIC PROGRAMMING
TO THE SYNTHESIS OF MULTIVARIABLE
CONTROL SYSTEMS

Consider a controlled object with 2 outputs (controlled variables)
interacting through the plant and m controlling inputs; here m>n. The
controlled variables are again denoted by y; and the controlling inputs
by x;; here i=1,...,n,and j=1,..., m.

The equation of motion of the system can be written in matrix form as

4¥ — ar + BX, (8.142)

where A is the matrix of plant parameters and coupling coefficients, B
the matrix of controller coefficients, ¥ and X are column vectors. For
t=0, we take Y=Y(0).

The criterion function is the integral

Y(X)=det. (8.143)
y _

The problem is to find a control function X as a function of the plant
states which minimizes the functional (8.143) /30/.

In (8.134) it is implied that each output is described by a first-order
differential equation. The perturbation equation can be easily written for
the general case and then reduced to the form (8.142), The problem then
can be stated as follows. Suppose that the i-th output is described by an
equation of V,-th order. Reducing the V;-th order equation to V; first-
order equations, we find

ar'i Vi n m
d; =ZavY*+2alep—zﬁ,ij, (8.144)
k=1 p=1 j=1
k=1
Yk=_’”;t (i=1,...,n k=1,..., V,_)

For simplicity we will henceforth assume that each output is described
by a first-order equation. In principle this restriction is of no con-
sequence, since in the more general case the eguation is reduced to the
form (8.142) and the synthesis methods derived in the following are directly
applicable.

In expanded form (8.142) is written as

n m
W= Vel o+ DX, (=1,..., n), (8.145)
k=1 j=1

Y (=0, Yi(0)=Yy
To simplify the notation, (8.145) can be written as
Gy s Yoy Xy oo X) =0, (Y, X) (8.146)
i=1,..., n.

The criterion function is the integral (8.143) with

n m
V=‘21a1Y?+}Zlb,X§. (8.147)
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Here a; and b; are known nonnegative weight coefficients, whose values
are chosen according to the desired sharpness of the minimum in each
controlled variable.

Solution for an open domain

In an open domain G(Y, X) the function is minimized over a class of
functions where X; and ¥; are continuous and continuously differentiable.

Following the procedure of /30/ for single-variable systems, we solve
the problem for multivariable control systems using Bellman's dynamic
programming method.

1.et the functions X=X(x, ..., %) minimize the functional (8.143). 1Itis
clear from the preceding discussion of Bellman's results that the minimum
of /(X)is a certain function ¢(Yo)of the initial state of the system. We may
therefore write

m}nl(X):u;(Yo). (8.148)

Bellman's conditions for our case take the following form. For a
positive p we may write

1(X)=fv¢zt=fpvm+fv¢t. (8.149)
o 0 ]

By Bellman's principle of optimality it is clear that, irrespective of the
choice of the function X[0, p] over [0, p], the function X [p, o] over [p, oo]

minimizing the functional det can be chosen as if minimizing the
P

functional det, with the difference that Y, takes on the role of the
[}

initial state at the time f=p. Hence,

@

min [ Vdt=v(,). (8.150)
X[D.wlp

Therefore, by (8.149) and (8.150),
)
"’(Y°)=x"ﬁf’},1[of th+¢(y,,)}. (8.151)

Let p be sufficiently small. Then, if the function ¢ is differentiable
with respect to ¥; for t€ [0, p} we have

w(Vp)=w[Yo+opl=w<yo>+20.-p(§7“;)t oo (8.152)
- .

Here
Yo+ Go=Fu+Gp, Yoo+ GCGop, ... s Yo,+Gp) (0<E<p)
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As for the residual term o(p), we have for p-»0

lim—=< () ={.

p->0

Equation (8.152) can be written as

— N o :
$(¥o)= min [Vo+w(Yo)+ 21:' Gp (_07:)1=;+° (p)] . (8.153)

For p—0 the interval [0, p] contracts to the single point 0, and the choice of
the function X [0, p] over this interval reduces to the choice of X(0).
Passing to the limit as p—»0, we obtain the equation in explicit form

n m n n m
rr;;n[Ea.-y%Eb,-x;+2(2aikyk+2a,,x,) ;’T"’] (8.154)
¢ Li=1 j=1 i=1 \ k=1 j=t

In order for (8.154) to give a minimum in x;, the derivatives of (8.154)

with respect to xy, ..., x» should vanish, For the solution of our problem
we thus have m+1 equations, that is

n m n n m

0
zaiy%_i—gbjx?"'_z(Eaihyk_}_zﬁljxj)a_;p—:o, (8.155)
i=1 j=1 i=1 \p=1 j=1 J
Oy N o
260+ By =0 (=Ll ... m. (8.156)

i=1

From (8.156) we have

1w, o .
x,'=-—2-5‘21,ﬂij-(% =1, ..., m). (8.157)

Substituting x; from (8.157) into (8.155), we find

Sasit 3 B g5=Fo, (o T2 +

i=1
+2 Eﬁu %% Zﬂ,; = (8.158)

We have ended up with a linear partial d1fferent1a1 equation, Its solution
gives the sought relationship between the controller outputs and the con-
trolled variables, i.e., the controller inputs.

Example
Consider a controlled plant shown in Figure 8.6. The controlled

variables ¥, and Y; interact through the plant, as is shown by the direct
coupling in the block diagram.,
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The gain parameters and the time constants are Ku, Kz, Tu, T for each
self-variable and K5, Ka, Tis, Ta for the coupling elements. In what follows
all the variable symbols stand for the deviations of the corresponding
variables from steady-state values. The plant equation in Laplace trans-
forms is

Yilp)= Hf',‘“p w(p)+ l_f?ﬂ, Ha (P (8.159)
Yy(p)= 1_” T+ 1+T’pl’«2([7)’ (8.1860)

where p is the controller input for the first variable, p. ditto for the
second variable. '
The controller inputs and outputs are related by

py (p) = K%y () (8.161)
and
B2 (D) = Ky, (p). (8.162)

Eliminating py, pe between (8.159) and (8.162) and changing back to the
originals, we write

TyTy o (T4 Tip) 2 +y1 O -
+ KoK Ty S KK+ Koot (8.163)
TuTn Sl dtz 7+ T+ sz) L+ gy == K1K21T227t—+
4 Kol T 7,—+K1K2,x, + KyKpo X (8.164)
To simplify (8.163), (8.164), we substitute
By Brmyy, By, Lo, (8.165)

In this notation, equations (8.163), (8.164) are written as

!}xz = — @yl — Gyt AXig - 1a X+ 15Xy + B16X

.‘/1 Y1

‘Yl—xw (8.166)
Y2 = Yo

Xp = X,

Yoo = — Gyl — QYo+ AypXiy - BoyXin =+ Aoy + e,

where

e i e R s 7
o= =T = Ta
=———+ =-— =
S T
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atp)

FIGURE 8.6. A multivariable control
system.

The problem is stated as follows. Find the control vector x, X5, Xz, Xz
as a function of the system outputs y,, y5, ys, yo that minimizes the functional

1= f [@09} 04 (93) + 003 + @y (y0) +
0
+ Byy B (X10) + BoX] + By (,5)7] 9 (8.167)

in an open domain N(y;, yu1, Yo, Y22, X1, X1z, X2, X2). Here ai and Pu are known
positive numbers.
The corresponding functional equation is

Y3+ @bl Ol 45, By E - Brpxd, + Bppxl
&
B+ (— @Y — Gy, + X+ a X, a0 + a,%,) % +
[
+ (— Qplos — Qotiy - GogXip = Bogy - By ) + gey) % +

0 %
+ 41 %‘Fyn 7;%=0- (8.168)

Additional equations are obtained by setting the derivatives of (8.168)
with respect to xi, xpp, %2, x22 €equal to zero. We have

w.r.t. x o .
2511x1+a15m+a25m=0y (8.169)
w.r.t, x5 ,
2}
w.r.t x 2512x12+ax3%+423%=0: (8.170)
s le X
o 0
W.r.t. Xy By + gy .+ 5, - =0, (8.171)
[/} /s
>2ﬂ21x22+a140—;!’—2+a24%=0. (8.172)
Hence,
=1 %
X = - [als s +ay; dy,,] , (8.173)
—_ 1 o
X1 == 5~ [a13 9, T 0 Oygz]' (8.174)
=1 [q 0% oY
Xy = 2829 [als 0412 +a26 5yzn] ! (8'1 75)
1 oy ov
== gy [0 gy + O - (8.176)




Substituting x,, X, X;,, and x, from (8.173) ——(8 176) into (8.168), we find
@y, 0l + Oyl 0yl + By [— o (s e )] +

by — 2;12 (2 g +anai ) +

+522[ 5 (a16m+a26 %)] +

+ B [—'21_(‘114 qu; +ay dy,,)]2+

¢
'+‘[" AnYre— il — m(ala 12 ~+ 8 0::2)

L (044 g+ gy i) — gﬁ— (15 2 -y 2 —

- 2?:2 (am [ +as Oy )] + @aler — @y, —

2732132 (a“* o!/n +ax oy,,) 2?,‘, (“Ma—y;—f—au %) —

2?151 (a“' 3y, T dy") 2‘15_2:2(‘116 5, T %7 2y )+
+y‘27y7+y220_y;=0' (8.177)

We have obtained a nonlinear partial differential equation. Its solution
is sought in the form

p=Cy2+ Cpofy+ Cotis + Coutii+
+ Ciothyro—+ Cratn¥z =+ Crathtios + Costhatyy +
+ Costsofn -+ Casliaym- (8.178)
Here C; are unknown coefficients.
It thus remains to find all the partial derivatives —3%""; from (8.178) and

insert the results in (8.169), (8.170), (8.171), and (8.172). This will enable
us to find the coefficients Ci. From the entire set of solutions we should
select those C; which ensure stability of the multivariable control system.
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Adaptive systems 224 ff
synthesis of equivalent fixed-structure
systems 180 - 238
Allocation, multistage 264 - 265
ANDRONOV viii, 48, 139, 170, 173
coarseness 48, 168, 172, 201, 204
noncoarse systems 201, 223
Automatic control, see Control
Autonomous control 5 (also see Noninteraction)
Auxiliary equation 61 ff, 116, 156, 160, 203
first kind 61, 210
second kind 63, 76, 103, 159, 190, 210
third kind 67
curve 84, 85, 86, 107 ff, 115, 137, 138
for multidimensional servosystem 113

Bandwidth, positive response 82, 109, 119
BELLMAN dynamic programming method 264
functional equation 267
principle of optimality 266, 269
BODE 223
sensitivity in single-variable systems 224 - 228
BOKSENBOM and HOOD, method 147 - 154
BOKSENBOM viii, 5
BOLTY ANSKII 214
BROMBERG 207

Canonic structures of MCS 58
Characteristic equation 72, 74, 78, 156, 157,
218, 220
degenerate 172
gain entering linearly 205 - 206
nonlinearly 206 -~ 207
MCS 59, 87, 127
with small parameters 201
plant 233
relay 213
saturation 212
search 233
Closed-loop system, gain-phase characteristics
79, 80
transfer function 105, 215, 216, 217, 219,
224, 227
Coarseness 48, 168, 172, 204
Combined control system 41, 123 ff
Continuous rolling, control system for 1-2, 6-12

Control, autonomous 5 (also see Noninteraction)

by deviation 122, 167, 168
coupling 56, 77, 114
load 122, 167
multivariable, variational aspects 239 - 273
system, combined 4, 36, 123 ff (also see Systems)
with load rejection 142
continuous rolling mill 1-2, 6 -12
derivation of fundamental properties 78 - 88
electric power network 12 - 17
equivalent to adaptive 233 - 238
multivariable, viii, 1 (also see MCS)
ordinary 41
combined 41
petroleum mining 243 - 249
proportional 117
rectifying column 20 ff
single-variable 149, 162
two-variable 95
variational aspects 239 ~ 273
vector as a function of time 249 - 258

Controlled object, equation 90

variables (defined) vii, 1

Controller 149

design, analytical 259

equation 35, 90, 97, 150, 158, 163
floating 42

gain 44

ideal 147, 159

isochronous 159

matrix representation 150

Coupling coefficients 71 ff

load 130

control 114

cross 33, 58

direct 33, 34, 58

load 38

measurement devices 38, 55, 105
natural 58

plant 38, 55

transducer 38, 55, 105

Criterion, Bellman's optimality 269

Routh-~-Hurwitz 76
stability 61 ff

Crossover frequency 81 ff, 113, 115
Current in a salient-pole generator 15




Current feedback, proportional 131
Cutoff frequency 81

DARCY law of filtration 31
D-decomposition curve 79, 81 ff, 106, 108, 109,
113 ff, 118, 137 ff, 205, 206, 207
derivation of the gain characteristic from 80
for the gain of a degenerate system 106 - 107
Declining degrees of polynomials, property of 66
Degenerate case 103
equation 61 ff, 68, 70, 74, 104, 105, 116, 118,
135, 136, 158, 160 ff, 172, 208, 210,
217, 231
first-loop 106
system 105, 107
three-variable 106
vector equation 103
Delay elements 35, 42
Disturbance rejection 180, 161, 169, 171, 174, 175
Disturbances 150
in forward and feedback path 199 - 200
load 142
external, rejection of 143, 166, 174
DRAPER 232
DRUZHININ 7
DUHAMEL integral 251
Dynamic programming, application to the synthesis
of MCS 268 - 273
properties of an isolated servosystem 113
MCS 98
systems, structural noise rejection in 182 - 186
Dynamics, multicoupled 105
of combined MCS 133 -139
of control system 101 -118, 106

Electric power system, control of 12-17
Equation, amplifier 35, 90, 97
auxiliary 61 ff, 156, 160, 203
characteristic 57, 72, 74, 78, 156, 157,
216, 220
gain entering linearly 205 - 206
nonlinearly 206 - 207
with small parameters 201
controller 35, 90, 97, 150, 158, 163
degenerate 61 ff, 68, 70, 74, 103, 104, 105,
116, 135, 136, 158, 160 ff, 172, 208,
210, 217, 231
derivation of the general MCS 89 - 101
electric machine conrtrol 14, 16
Euler~Lagrange 260, 261
functional 264 - 267
lag element 163
load-coupled system 39
MCS 39, 59
matrix form 37 - 42
measuring device 35, 90, 97, 150
multidimensional servosystem 39
nonlinear element 209
oil reservoir 30

Equation, planmt 90, 97, 119, 150, 158, 163
rectifying column 27, 28
stabilizer 211
Error matrix 49
generalized 53
two-variable system 54 - 55
permissible 202 ff
Errors in MCS with basic elements 48 - 56
EULER - LAGRANGE equation 260, 261
Extremum problems 240

Feedback, elastic 159
invariance via 170 -175
local 169 -170, 172
negative 89, 188
noise rejection 200
noisy 199
positive 169 - 170, 172
proportional 131
stabilization by 130
FEL'DBAUM ix, 7, 143
Filtration, Darcy law 31
Fixed-structure control system with adaptive
properties 180 - 238
Floating controller 42
systems 93
Forward path, noisy 199 - 200
FREEMAN 5
Frequency and speed control equation 16
crossover 81 ff, 113, 115
cutoff 81
response, closed-loop 86
real 81 ff
Function, transfer 10, 14, 57, 73, 76, 112,
121 -127, 133, 134, 141
asymmetric 79
closed-loop 105
symmetric 79
Functional equation 264 - 267

Gain and phase margin 80
characteristic, determination from D-decomposition
curve 80
controller 44, 174
determination of 204 - 208
entering linearly the characteristic equation 205 -206
nonlinearly the characteristic equation 206 - 207
infinite 67, 69~-70, 72-77, 118, 214
nonlinear element 210
-phase characteristic, closed-loop 79, 80
plant 173
stability 59 - 69, 73, 118
GOLOMB 5

HOELDER's inequality 254 ff
integral inequality 254

HOOD viii, 5, 147 -154

HURWITZ criterion 237
determinant 63
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Ideal plant 195, 198, 225
relay 213
Infinite gain, stability 69 -70, 72-77, 118
in relays 214
Integral MCS 97 ff, 115 ff
single-loop system 42
subsystems 43 ff, 130 -132
systems 93, 117
variables 46
Invariance and noninteraction in MCS 143 - 179
simultaneous derivation 176
conditions 4
principle 166 - 175
via feedback 170 - 175
Irregularity coefficients 146, 147
Isochronous controller 159
stabilizer 159
system 159 - 161

KAVANAGH §
KIRILLOVA 250, 253, 257
KOCHENBURGER 233 ff
KOKOTOVIC 223

sensitivity 227 - 229
KRANC x, 250
KRASOVSKII 5, 48, 25 - 251
KUKHTENKO 143
KULEBAKIN viii, 143
KULIKOWSKI 250

Lag element, equation 163
Lagged plant, noninteraction in 163
system 68 - 69
with infinite-gain stability 72 -77
Lagless plant, noninteraction in 162
system 60 -68, 118
with infinite gain stability 69 -70
LAGRANGE's function 260, 261, 263
multipliers 260
LAPLACE rtransform 24, 27, 35, 39, 51, 77, 90,
125 ff, 148, 155, 157, 164, 171, 185,
197, 221, 222, 230, 271
LEE 232
LETOV 259, 263, 264
Linear programming, application of 240 - 242
Linearized system 221
Load control 122
coupling coefficients 130
disturbances 142
rejection 139 - 141, 161, 169, 174, 175
combined control system with 142
infinite gain 141 - 142
stabilizer used for 142
Loop, aperiodic 155
LUZIN 143
LYAPUNOV 62

Margin, gain 81
phase 81

Matrix, error 49
generalized 53
of controlled variables 40
representation of plant and controller 150
transition 251 :
MCS, block-diagram 4
combined 122 - 142
dynamics 133 - 139
stability 132 -133
equation, derivation of 89-101
integral 97 ff, 115 ff
invariance and noninteraction in 143 - 179
plant-coupled, 105, 120
proportional 89 ff, 101 ff
realizability of noiseproof structures 190 - 193
synthesis, application of dynamic programming to
268 - 273
with coupling through the measuring device 77 - 78
infinite-gain stability 89 -121
Measuring device, equation 35, 90, 97, 150
ideal 147
MEEROV 80,
MESAROVIC 5, 147
MIKHAILOV viii
MIKHNEVICH §
MOROZOVSKII 5
Multicoupled dynamics 105
Multidimensional servosystem 2, 36, 41, 56, 58, 77
Multistage allocation process 164 =~ 165
Multivariable control systems vii, ix, 1, 32, 184 -186
(also see MCS)
canonic structures 57 - 58
steady-state operation 42 - 48
with basic elements 32 - 56
variational aspects of 239 - 273

Noise-free elements, transfer function 182
in forward and feedback paths 200
rejection 186

by stabilizers 195
in dynamic systems, 182 -1886
in feedback path 200
structural 185
physical realizability 186 - 190

Noisy elements, transfer function 183
feedback 199
plant 194 - 199
systems 232

Noncoarse systems 223

Noninteraction 144 - 154
and invariance, simultaneous derivation of 176
as a dynamic property 154 - 159
complete 144, 154
conditions 151
in lagged plant 163 - 166

lagless plant 162
the general case 161 - 163
perfect 144
Nonlinearities 209 - 212
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Nyquist diagram 79, 81

Oil-field exploitation, optimal control problems
29 - 31, 244 -249
Optimal policy 264 - 265
Optimality, Bellman's principle of 264 - 267, 269
Output searching loss 233
vector, matrix equation 102
Overshoot 83 ff

Parameters,  small, characteristic equation with 201
quantitative estimation of 201 - 203
variable, in a control system 229 - 233
Passive elements, minimum number of 121
stabilizers 118, 225
Petroleumn mining control 29 - 31, 244 - 249
PETROV viii, 143
Phase angle equations 14
margin 80, 81
Plant and controller, matrix representation of 150
characteristic 233
coupling 55, 105, 120
cross 33
direct 33, 34
equation 97, 119, 150, 158, 163
ideal 195, 198, 225
noisy 194 -199
noninteracting, lagged 163
lagless 162
transfer function 227, 235
variable parameters 230, 232
Policy, optimal 264 - 265
Polynomials, property of declinfng degrees 66
PONCELET principle 36, 167
PONTRYAGIN 214
POPOV's method 212, 231, 237
Principle of control by deviation 122
load control 122
optimality 266, 269
Poncelet 36, 167
Watt—Polzunov 4, 36, 122, 167, 171, 173
Programming, dynamic 264
application to MCS synthesis 268 - 273
linear 240 - 242
Proportional control 101, 117
feedback 131
MCS 89 ff, 101 ff
subsystems 45, 47-48, 93, 127-130
systems 93
single-loop 42
variables 46 .

Rectification, functional diagram 18
Rectifying column 17 - 29
binary 19, 20 ff
diagram 22
equations 23 ff
separation of multicomponent mixtures 19 - 20
vacuum distillation 21

Rejection, disturbance 130, 143, 161, 166, 174
conditions 169, 174, 175
derivation of 171
load 139 - 142
noise 180 - 186 .
application of stabilizers to 195
in the feedback path 200
physical realizability 186 - 190
structure ensuring stability and 188
Relay characteristics 213
ideal 213
infinite gain 214
systems 212 - 222
stability 213 - 222
with insensitive zone 213
Response, real frequency 81 ff
Rolling mill, continuous, strip gage control in
1, 2, 6-12
ROUTH--HURWITZ criterion 76
ROZONOER 143

SARACHIK ix, 5, 250
Saturation characteristic 212
Search characteristic 233
periodic 233
Searching loss, output 233
region 233
systems 233
Self-adjusting systems 193 - 194, 224 ff
synthesis of equivalent fixed-structure
systems 180 - 238
Sensitivity 223 ~ 229
Bode 224 - 226
Kokotovic 227 - 229
zero 223
Servosystem, auxiliary curve 114
dynamics 113
multidimensional 2, 3, 36, 41, 56, 58, 77, 96,
113, 114, 150, 158
SHCHIPANOV 143, 168
SILIMZHANOV ix
Simplex method 247
Single-loop system, integral 42
proportional 42
Single-variable control system 118, 149, 162,
182 -184
Bode sensitivity 224 - 226
subsystems 175, 192
Sliding action conditions 220 - 222
Stability 61 ff
and noise rejection, structure ensuring 188
aperiodic 64
conditions 187, 190
criteria 61 ff
infinite-gain 69 -70, 118, 166
of combined MCS$ 132 -133
MCS, effect of subsystem gain on 59 - 69
relay systems 213 - 220
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Stability requirements 103
Stabilization by proportional feedback 130
Stabilized elements, gains of 73
Stabilizer 71, 122, 129
equation 211
isochronous 159
load rejection 142
mixed-type 130
noise rejection 195
operator 71
passive 118, 225
real 193
structures with several 118 - 121
real, structure with 205
transfer function 76, 77, 161, 162
Steady -state operation 42 -48, 127 - 132
Structural noise rejection 185
in dynamic systems 182 - 186
physical realizability 186 - 190
Structure, canonic 58
choice of 34 ff, 122
infinite-gain stability 69 -70
MCS 57 - 88
noiseproof 190 - 193
proportional-control 101
stability and noise rejection 188
with stabilizers 118 -121, 205
Subsystem gain, effect on stability 56 - 69
increase 67, 96
integral 43 ff, 130 - 132
multiloop 119, 174
proportional 45, 47 -48, 93, 127-130
single-loop 59
single-variable 175
with stabilizer 70, 73
Synthesis of fixed-structure systems equivalent
to adaptive systems 180 - 238
of MCS, application of dynamic programming
to 268 -273
System, adaptive 224 ff (also see Subsystem)
Bode sensitivity 224 - 226
control-coupled 77
disturbance rejection 166
dynamics 101 -118
equivalent to adaptive synthesis of 180 - 238
fixed-structure 180 - 238
floating 93
integral 93-117
isochronous 159 ~ 161
Kochenburger's 234 ff
lagged 68 ~ 69
lagless 60 - 68
linearized 221
multicomponent, general case 182
noise rejection 182 - 186
physical realizability 186 - 190
noisy 232
noncoarse 223

System, noninteracting 51
proportional 117
relay 212 -222
single-variable 118, 149, 162

Bode sensitivity 224 - 226

structural noise rejection 182 - 190
synthesis 180 - 238
three-variable 99, 100, 167 - 169
wransfer function 236
two-variable 95, 107, 117
variable-structure 212
zero sensitivity 223

Three-dimensional servosystem 96
Three-variable system 99, 100, 167 -169
degenerate 106
plant- and transducer coupled 104
Time lag 69
Transducer coupling 55, 105
ideal 145, 147
output 123, 140
ratio 140, 141, 195
Transfer function 10, 14, 57, 73, 76, 112, 121 -127,
133, 134, 140, 141, 153, 154, 161, 176, 183,
188, 193 ff, 210, 215, 218, 220, 231, 236
asymmetric 79
closed-loop 105, 215, 216, 217, 219, 224, 227
controlled object 227, 233, 235
MCS 34 - 317
noisefree elements 183
noisy elements 183
noninteracting system 51
plant 227, 235
single-variable system 195
symmetric 79
Transforms, see Laplace transform
Transient behavior of a system 218
component, free 207
Transition matrix 251
TRUXAL 223
TSUKERNIK 5
TSYPKIN 207, 213
Two-dimensional servosystem 114
Two-~variable control system 95
dynamic properties 107
integral 117

USDIN 5

Variable parameters in control systems 229 - 233
Variable-structure systems 212
Variables, controlled vii
integral 46
proportional 46
Variational aspects of multivariable control 239 - 273
calculus, application of 258 - 263
Vector equation, degenerate 103
VENIKOV §
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VOZNESENSKII ix, 5, 144 -147, 149, 154, 155

WARD—LEONARD d. c, engine 8, 11
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WATT—POLZUNOV principle 4, 36, 122, 167, 171, 173

Zero-sensitivity systems 223, 228




